精英家教网 > 高中数学 > 题目详情
(已知集合A={x||x+1|<1},B{x|y=
1
x+1
},则A∩B=(  )
A、(-2,-1)
B、(-2,-1]
C、(-1,0)
D、[-1,0)
考点:交集及其运算
专题:集合
分析:求出A中绝对值不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.
解答: 解:由A中不等式变形得:-1<x+1<1,即-2<x<0,
∴A=(-2,0),
由B中y=
1
x+1
,得到x+1>0,即x>-1,
∴B=(-1,+∞),
则A∩B=(-1,0),
故选:C.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的导数:
(1)y=cos(
π
3
-4x)

(2)y=2(xex+e-
1
2
)

(3)y=
sin2x
2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
1
i-1
(i是虚数单位)的虚部是(  )
A、1
B、i
C、-
1
2
D、
1
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3,4),
b
a
的方向相反且|
b
|=10,求
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z1=
3
2
a+(a+1)i,z2=-3
3
b+(b+2)i(a,b∈R),若z1-z2=4
3
,则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体ABCD中,E,F分别为AB,CD的中点,则异面直线EF与AD所成角的度数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角梯形ABCD中,AD∥BC,AD=AB=
1
2
BC=2,∠ABC=90°,△PAB是等边三角形,平面PAB⊥平面ABCD.
(1)求证:BD⊥DC;
(2)求三棱锥P-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
和向量
b
的夹角为135°,|
a
|
=2,|
b
|
=3,则
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是边长为a的正方形,SA=a且
SA⊥底面ABCD
(1)证明AB⊥侧面SAD;
(2)求四棱锥S-ABCD的体积.

查看答案和解析>>

同步练习册答案