精英家教网 > 高中数学 > 题目详情
5.已知曲线Γ上的点到F(1,0)的距离比它到直线x=-3的距离小2,过F的直线交曲线Γ于A,B两点.
(1)求曲线Γ的方程;
(2)若$\overrightarrow{AF}=2\overrightarrow{FB}$,求直线AB的斜率;
(3)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

分析 (1)由已知:点M到F(1,0)的距离与它到直线l':x=-1的距离相等,所以点M的轨迹C是以F为焦点,l'为准线的抛物线,由此能求出曲线C的方程;
(2)设直线AB方程为x=my+1.将直线AB的方程与抛物线的方程联立,得y2-4my-4=0.由此能够求出直线AB的斜率.
(3)由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AOB.由此能求出四边形OACB的面积最小值.

解答 解:(1)由已知条件知,点M到F(1,0)的距离与它到直线l':x=-1的距离相等,
∴点M的轨迹C是以F为焦点,l'为准线的抛物线,
∴曲线C的方程为y2=4x(4分)
(2)依题意,设直线AB方程为x=my+1.            
将直线AB的方程与抛物线的方程联立,消去x得y2-4my-4=0. 
设A(x1,y1),B(x2,y2),所以 y1+y2=4m,y1y2=-4. ①
因为 $\overrightarrow{AF}=2\overrightarrow{FB}$,
所以 y1=-2y2.    ②…(5分)
联立①和②,消去y1,y2,得m=±$\frac{\sqrt{2}}{4}$. …(8分)
所以直线AB的斜率是$k=±2\sqrt{2}$(4分)
(3)由点C与原点O关于点M对称,得M是线段OC的中点,
从而点O与点C到直线AB的距离相等,
所以四边形OACB的面积等于2S△AOB.  …(9分)
因为2S△AOB=2×$\frac{1}{2}•|OF|×$|y1-y2|=4$\sqrt{1+{m}^{2}}$…(12分)
所以 m=0时,四边形OACB的面积最小,最小值是4.      …(13分)

点评 本题考查抛物线的定义与方程,考查直线斜率的求法,考查四边形面积的最小值的求法,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\sqrt{1-x}$+$\frac{1}{{\sqrt{x+3}}}$的定义域为(  )
A.(-∞,1]B.(-3,1]C.[-3,1]D.(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线y2+$\frac{x^2}{m}$=1的一个焦点与抛物线x2=8y的焦点相同,则此双曲线的方程为(  )
A.$\frac{x^2}{3}-{y^2}=1$B.y2-x2=1C.y2-x2=1D.${y^2}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow{a}$=(x-2,2),$\overrightarrow{b}$=(4,y),$\overrightarrow{c}$=(x,y),x,y∈R,若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{c}$|的最小值是(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{4\sqrt{5}}{5}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设F1,F2为椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的左、右焦点,动点P的坐标为(-1,m),过点F2的直线与椭圆交于A,B两点.
(1)求F1,F2的坐标;
(2)若直线PA,PF2,PB的斜率之和为0,求m的所有整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点P在曲线C:y2=4-2x2上,点$A({0,-\sqrt{2}})$,则|PA|的最小值为(  )
A.$2-\sqrt{2}$B.$2+\sqrt{2}$C.$2\sqrt{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知:正数x,y.
(1)求证:x3+y3≥x2y+y2x;
(2)若$\frac{x}{y^2}+\frac{y}{x^2}≥\frac{m}{2}(\frac{1}{x}+\frac{1}{y})$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆具有如下性质:若椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,则椭圆在其上一点A(x0,y0)处的切线方程为$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}=1$,试运用该性质解决以下问题:已知椭圆${C_1}:\frac{x^2}{2}+{y^2}=1$和椭圆${C_2}:\frac{x^2}{4}+{y^2}=λ$(λ>1,λ为常数).

(1)如图(1),点B为C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,求△OCD面积的最小值;
(2)如图(2),过椭圆C2上任意一点P作C1的两条切线PM和PN,切点分别为M,N,当点P在椭圆C2上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二项式${({\frac{a}{x}+3})^n}$的展开式的系数和为256,则a的值为-1或-5.

查看答案和解析>>

同步练习册答案