精英家教网 > 高中数学 > 题目详情
一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔64海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为
 
海里/小时.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:根据题意可求得∠MPN和,∠PNM进而利用正弦定理求得MN的值,进而求得船航行的时间,最后利用里程除以时间即可求得问题的答案.
解答: 解:如图所示,∠MPN=75°+45°=120°,∠PNM=45°.
在△PMN中,
PM
sin45°
=
MN
sin120°

∴MN=
64×
3
2
=32
6

∴v=
MN
4
=8
6
(海里/小时).
故答案为:8
6
点评:本题主要考查了解三角形的实际应用.解答关键是利用正弦定理建立边角关系,考查了学生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2-2bx+a,若实数a,b均是从集合{0,1,2,3}中任取的元素(可以重复),则该函数只有一个零点的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列有关命题的四个说法:
①“x2=1”是“x=1”的必要不充分条件;
②p:“y=sinx在第一象限是增函数”;q:“a2+b2≥ab”;则p∧q是真命题;
③命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1≥0”;
④命题“若sinx=siny,则x=y或x=π-y”的逆否命题为真命题.
其中说法正确的有
 
(只填正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx+bcosx(x∈R,ab≠0),给出下列命题:
①存在a,b使f(x)是奇函数;
②若对任意x∈R,存在x1,x2,使f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为π;
③过点(a,b)作直线l,则直线l与函数f(x)=asinx+bcosx(x∈R,ab≠0)的图象必有交点;
④若对任意x∈R,|f(x)|≥|f(
4
)|,则a=b;
⑤若tanα=
a
b
,则f(α)=±
a2+b2

其中正确的是
 
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|x+3|+|x-1|的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-4x在区间[1,4]上的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(m+1)x-(m+
7
4
)的图象与x轴没有公共点,则m的取值范围是
 
(用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,各条棱长均为2的正三棱柱ABC-A1B1C1中,M为A1C1的中点,则三棱锥M-AB1C的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式组
2x-y≥0
x+y-3≥0
5x-y≤9
,则z=
y
x+1
的最小值与最大值之和为
 

查看答案和解析>>

同步练习册答案