精英家教网 > 高中数学 > 题目详情
已知集合A={x|x=3n+1,n∈Z},B={x|x=3n+2,n∈Z},M={x|x=6n+3,n∈Z},对于任意a∈A,b∈B,是否一定有a+b=m且m∈M?
考点:元素与集合关系的判断
专题:集合
分析:根据已知条件知:若a∈A,b∈B,则一定存在n1,n2∈z,使得a=3n1+1,b=3n2+1,所以a+b=3(n1+n2)+3.而集合M的元素需满足:x=6n+3=3•2n+3,显然n1+n2不一定等于2n,所以不一定有a+b=m且m∈M.
解答: 解:∵a∈A,b∈B;2
∴分别存在n1,n2∈z使得:
a=3n1+1,b=3n2+2;
∴a+b=3(n1+n2)+3;
而集合M中的条件是:x=6n+3=3•2n+3;
∴要使a+b∈M,则n1+n2=2n,这显然不一定;
∴不一定有a+b=m且m∈M.
点评:本题考查描述法表示集合,元素与集合的关系,以及描述法表示一个集合时,如何判断一个元素是否是这个集合的元素.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有一个圆锥的侧面展开图是一个半径为5、圆心角为
5
的扇形,在这个圆锥中内接一个高为x的圆柱.
(1)求圆锥的体积;
(2)当x为何值时,圆柱的侧面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

如果点P在平面区域 
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,点Q在曲线x2+(y+2)2=1上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若直线l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,且an=
n+1
2
1
S1
+
1
S2
+…+
1
Sn
)(n∈N*
①求a1,a2,a3
②求数列{an}的通项公式an
③若数列{bn}满足b1=1,bn=
1
bn-1
+
1
an
(n≥2),求证:bn2<2+2(
1
2
b1+
1
3
b2+
1
4
b3+…+
1
n
bn-1)(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={x|x2+x+a=0,B={x|x<0},已知A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)在区间(a,b)的零点按精确度为ε求出的结果与精确到ε求出的结果可以相等,则称函数y=f(x)在区间(a,b)的零点为“和谐零点”.试判断函数f(x)=x3+x2-2x-2在区间(1,1.5)上,按ε=0.1用二分法逐次计算,求出的零点是否为“和谐零点”.(参考数据f(1.25)=-0.984,f(1.375)=-0.260,f(1.438)=0.165,f(1.4065)=-0.052)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y>a2+1或y<a},B={y|2≤y≤4},若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,已知am-1+am+1-am2=0,S2m-1=38,求m的值.

查看答案和解析>>

同步练习册答案