精英家教网 > 高中数学 > 题目详情
17.若曲线y=x2+ax+b在点(0,b)处的切线方程x-y+1=0,则(  )
A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1

分析 求出函数的导数,运用导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,可得切线的斜率,由切线方程可得a=1,b=1.

解答 解:y=x2+ax+b的导数为y′=2x+a,
可得在点(0,b)处的切线斜率为a,
由点(0,b)处的切线方程为x-y+1=0,
可得a=1,b=1,
故选:A.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,以及直线方程的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知复数z=3+4i(i为虚数单位),则复数$\overline z+5i$的对应点在一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-1,k),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{a}$+3$\overrightarrow{b}$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足:|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$,则<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设集合A={(x,y)|x2+y2+2x-1=0},B={(x,y)|(x+t)2≥y2},若A⊆B,则实数t的取值范围为t≤-1或t≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设P是左、右顶点分别为A,B的双曲线x2-y2=1上的点,若直线PA的倾斜角为$\frac{2π}{3}$,则直线PB的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{11π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|2x<2},B={y|y=$\sqrt{x}$},则A∩B=(  )
A.[0,1)B.(0,2)C.(1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|y=ln(x-1)},集合B={x|x2-3x>0},则A∩(∁RB)=(  )
A.(1,3)B.(1,3]C.[0,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若过点P(a,a)与曲线f(x)=xlnx相切的直线有两条,则实数a的取值范围是(  )
A.(-∞,e)B.(e,+∞)C.(0,$\frac{1}{e}$)D.(1,+∞)

查看答案和解析>>

同步练习册答案