精英家教网 > 高中数学 > 题目详情
12.若过点P(a,a)与曲线f(x)=xlnx相切的直线有两条,则实数a的取值范围是(  )
A.(-∞,e)B.(e,+∞)C.(0,$\frac{1}{e}$)D.(1,+∞)

分析 设切点为(m,mlnm),求出导数,求得切线的斜率,由两点的斜率公式可得$\frac{1}{a}$=$\frac{lnm}{m}$,设g(m)=$\frac{lnm}{m}$,求出导数和单调区间,可得最大值,由题意可得0<$\frac{1}{a}$<$\frac{1}{e}$,解不等式即可得到所求范围.

解答 解:设切点为(m,mlnm),f(x)=xlnx的导数为f′(x)=1+lnx,
可得切线的斜率为1+lnm,
由切线经过点P(a,a),可得1+lnm=$\frac{mlnm-a}{m-a}$,
化简可得$\frac{1}{a}$=$\frac{lnm}{m}$,(*),
由题意可得方程(*)有两解,
设g(m)=$\frac{lnm}{m}$,可得g′(m)=$\frac{1-lnm}{{m}^{2}}$,
当m>e时,g′(m)<0,g(m)递增;
当0<m<e时,g′(m)>0,g(m)递减.
可得g(m)在m=e处取得最大值$\frac{1}{e}$,
即有0<$\frac{1}{a}$<$\frac{1}{e}$,解得a>e.
故选:B.

点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查函数方程的转化思想,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若曲线y=x2+ax+b在点(0,b)处的切线方程x-y+1=0,则(  )
A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{\sqrt{-x},x≤0}\end{array}\right.$,则f(4)+f(-4)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A,B是圆C:x2+y2=1上两点,且$\overrightarrow{OA}•\overrightarrow{OB}$=-1,点P是直线x-y-2=0上一点,则$\overrightarrow{PA}•\overrightarrow{PB}$的最小值是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\frac{xlnx+ax}{e^x}$(e是自然对数的底数,a是大于1的常数),设m>1,则下列正确的是(  )
A.$\frac{4mf(m+1)}{m+1}$>2$\sqrt{m}$f(2$\sqrt{m}$)>(m+1)f($\frac{4m}{m+1}$)B.$\frac{4mf(m+1)}{m+1}$<2$\sqrt{m}$f(2$\sqrt{m}$)<(m+1)f($\frac{4m}{m+1}$)
C.2$\sqrt{m}$f(2$\sqrt{m}$)>$\frac{4mf(m+1)}{m+1}$>(m+1)f($\frac{4m}{m+1}$)D.2$\sqrt{m}$f(2$\sqrt{m}$)<$\frac{4mf(m+1)}{m+1}$<(m+1)f($\frac{4m}{m+1}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.与曲线y=x2相切,且与直线x+2y+1=0,垂直的直线的方程为(  )
A.y=2x-2B.y=2x+2C.y=2x-1D.y=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.比较下列各组数的大小
(1)sin(-320°)与sin700°
(2)cos$\frac{17π}{8}$与cos$\frac{37π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知角α的终边上的一点P(-$\sqrt{3}$,$\sqrt{5}$),则cosα的值为(  )
A.-$\frac{\sqrt{15}}{3}$B.-$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{6}}{4}$D.$\frac{\sqrt{10}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出如下定义:对函数y=f(x),x∈D.若存在实常数C,对任意的x1∈D,存在唯一的x2∈D,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=C成立,则称函数y=f(x)为“和谐函数”,常数C为函数y=f(x)的“和谐数”,若函数g(x)=lnx,x∈[e2,e3]为“和谐函数”,则其可能的“和谐数”为$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案