精英家教网 > 高中数学 > 题目详情
19.若三次函数$f(x)=\frac{1}{3}{x^3}-(4m-1){x^2}+(15{m^2}-2m-7)x+2$在x∈R上是增函数,则m的取值范围是(  )
A.m≤2或m≥4B.2<m<4C.2≤m≤4D.m<2或m<4

分析 问题转化为f′(x)=x2-2(4m-1)x+(15m2-2m-7)≥0在R上恒成立即可,结合二次函数的性质从而求出m的范围.

解答 解:若函数f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在R上是增函数,
只需f′(x)=x2-2(4m-1)x+(15m2-2m-7)≥0在R上恒成立即可,
∴只需△=4(4m-1)2-4(15m2-2m-7)≤0即可,
解得:2≤m≤4,
故选:C.

点评 本题考查了函数的单调性、函数恒成立问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\frac{lnx}{x}$,则函数f(x)的单调递增区间为(0,e).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a2=-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$y=\frac{1}{3}{x^3}-3x+m$的图象与x轴恰有两个公共点,则m=(  )
A.-1或2B.-9或3C.-1或1D.-$2\sqrt{3}$或$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足an+1-an=1,a1=1,试比较$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2^n}}}}$与$\frac{n+2}{2}(n∈{N^*})$的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,若ac=$\frac{1}{4}$b2,sin A+sin C=t sin B,且B为锐角,则实数t 的取值范围是($\frac{\sqrt{6}}{2}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若a为实数,且(2+ai)(a-2i)=-4i,则|a+2i|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合A={x|1<x≤3},B={x|x>2},则A∩(∁UB)=(  )
A.{x|1≤x≤2}B.{x|1≤x<2}C.{x|1<x≤2}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知{an}是首项为32的等比数列,Sn是其前n项和,且$\frac{{S}_{6}}{{S}_{3}}$=$\frac{65}{64}$,则数列{|log2an|}前10项和为58.

查看答案和解析>>

同步练习册答案