精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2,3,1),
b
=(1,2,0),则|
a
-
b
|等于
 
考点:空间向量的夹角与距离求解公式
专题:空间向量及应用
分析:利用向量的坐标运算和模的计算公式即可得出.
解答: 解:
a
-
b
=(1,1,1),
∴|
a
-
b
|=
12+12+12
=
3

故答案为:
3
点评:本题考查了向量的坐标运算和模的计算公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

帆船是借助风推动船只在规定距离内竞速的一项水上运动,是奥运会的正式比赛项目,帆船的最大动力来源是“伯努利效应”,如果一帆船所受“伯努利效应”产生力的效果可使船向北偏东30以速度20km/h行驶,而此时水的流向是正东,流速为20km/h.若不考虑其他因素,帆船的航行的实际速度为
 
,方向为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点D在线段BC的延长线上,且
BC
=2
CD
,点O在线段CD上(与点C,D不重合)若
AO
=x
AB
+(1-x)
AC
,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列结论中:
①若不等式f(x)>0的解集为(-∞,m)∪(n,+∞),则f(m)=f(n)=0;
②命题x,y∈R,若x2+y2=0,则x=0或y=0的否命题是假命题;
③在△ABC中,A>B的充要条件是sinA>sinB;
④若非零向量
a
b
c
两两成的夹角均相等,则夹角的大小为120°;
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=
a•2x+a2-2
2x-1
(x∈R,x≠0)
,其中a为常数,且a<0.
(1)若f(x)是奇函数,求a的取值集合A;
(2)当a=-1时,求f(x)的反函数;
(3)对于问题(1)中的A,当a∈{a|a<0,a∉A}时,不等式x2-10x+9<a(x-4)恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若y=f(x)是函数y=2x-1的反函数,则f(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax2+(a2-1)x-3a为偶函数,其定义域为[4a+2,a2+1],则f(x)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,已知AB=4,AD=3,∠BAD=60°,点E,F分别满足
AE
=2
ED
DF
=
FC
,则
AF
BE
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2cosx+1的最大值是(  )
A、1B、-1C、3D、2

查看答案和解析>>

同步练习册答案