精英家教网 > 高中数学 > 题目详情
在△ABC中,点D在线段BC的延长线上,且
BC
=2
CD
,点O在线段CD上(与点C,D不重合)若
AO
=x
AB
+(1-x)
AC
,则x的取值范围是
 
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:根据所给的数量关系,写出要求向量的表示式,注意共线的向量之间的二分之一关系,根据表示的关系式和所给的关系式进行比较,得到结果.
解答: 解:
AO
=
AC
+
CO
=
AC
+y
BC
=
AC
+y(
AC
-
AB
)=-y
AB
+(1+y)
AC

BC
=2
CD

∴y∈(0,
1
2
),
AO
=x
AB
+(1-x)
AC

∴x∈(-
1
2
,0)
故答案为:(-
1
2
,0)
点评:本题考查向量的基本定理,注意表示向量时,一般从向量的起点出发,绕着图形的边到终点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0)
(1)若x∈[
π
2
8
]时,求f(x)=2
a
b
+1的最大值并求出相应x值.
(2)若x=
π
6
,求
a
c
夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

若式子σ(a,b,c)对任意a,b,c∈R,都有σ(a,b,c)=σ(c,a,b),则称σ(a,b,c)为轮换对称式,给出如下三个式子:
①σ(a,b,c)=abc;
②σ(a,b,c)=a2-b2+c2
③σ(A,B,C)=cosC•cos(A-B)-cos2C(A,B,C是△ABC的内角).
则其中所有轮换对称式的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察等式:f(
1
3
)+f(
2
3
)=1;
f(
1
4
)+f(
2
4
)+f(
3
4
)=
3
2

f(
1
5
)+f(
2
5
)+f(
3
5
)+f(
4
5
)=2;
f(
1
6
)+f(
2
6
)+f(
3
6
)+f(
4
6
)+f(
5
6
)=
5
2


由以上几个等式的规律可猜想f(
1
2014
)+f(
2
2014
)+f(
3
2014
)+…+f(
2012
2014
)+f(
2013
2014
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=
2
2
t
y=
2
2
t+2
(其中t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,图C的极坐标方程为ρ=2
2
cos(θ+
π
4
),则过直线上的点向圆所引切线长的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某班有40名学生,现有25名学生选修了数学建模课程,有18名学生选修了物理实验探究课程.如果有5名学生这两门选修课程都没参加,则这个班同时选修了这两门课程的同学有
 
名.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆
x2
m
+
y2
n
=1的焦点坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,3,1),
b
=(1,2,0),则|
a
-
b
|等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,已知AB=3,DC=2,点E、F分别在边AD、BC上,且
ED
=5
AE
FC
=5
BF
,若向量
AB
DC
的夹角为60°,则
AB
EF
的值为
 

查看答案和解析>>

同步练习册答案