精英家教网 > 高中数学 > 题目详情
观察等式:f(
1
3
)+f(
2
3
)=1;
f(
1
4
)+f(
2
4
)+f(
3
4
)=
3
2

f(
1
5
)+f(
2
5
)+f(
3
5
)+f(
4
5
)=2;
f(
1
6
)+f(
2
6
)+f(
3
6
)+f(
4
6
)+f(
5
6
)=
5
2


由以上几个等式的规律可猜想f(
1
2014
)+f(
2
2014
)+f(
3
2014
)+…+f(
2012
2014
)+f(
2013
2014
)=
 
考点:归纳推理
专题:推理和证明
分析:由已知中的等式可得:左边自变量的分母为n时,分母由1以1为公差递增到n-1,等式右边的分母均为2,分子为n-1,进而得到答案.
解答: 解:由已知中的等式:
f(
1
3
)+f(
2
3
)=1=
2
2

f(
1
4
)+f(
2
4
)+f(
3
4
)=
3
2

f(
1
5
)+f(
2
5
)+f(
3
5
)+f(
4
5
)=2=
4
2

f(
1
6
)+f(
2
6
)+f(
3
6
)+f(
4
6
)+f(
5
6
)=
5
2


归纳可得:等式左边自变量的分母为n时,分母由1以1为公差递增到n-1,等式右边的分母均为2,分子为n-1,
故f(
1
2014
)+f(
2
2014
)+f(
3
2014
)+…+f(
2012
2014
)+f(
2013
2014
)=
2013
2

故答案为:
2013
2
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知平面ABEF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠ADC=90°,AB∥CD,AD=AF=a,AB=2CD=2a.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:AC⊥平面BCE;
(Ⅲ)求四棱锥C-ABEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

帆船是借助风推动船只在规定距离内竞速的一项水上运动,是奥运会的正式比赛项目,帆船的最大动力来源是“伯努利效应”,如果一帆船所受“伯努利效应”产生力的效果可使船向北偏东30以速度20km/h行驶,而此时水的流向是正东,流速为20km/h.若不考虑其他因素,帆船的航行的实际速度为
 
,方向为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x-a|+3x,当a=1时,求不等式f(x)≥3x+2的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的各项为正数,公比为q,若q2=4,则
a3+a4
a4+a5
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)对定义域的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)f(x2)=1成立,则称该函数为“依赖函数”.给出以下命题:
①y=
1
x2
是“依赖函数”;
②y=2x“依赖函数”;
③y=lnx是“依赖函数”;
④y=f(x),y=g(x)都是“依赖函数”,且定义域相同,则y=f(x)•g(x)是“依赖函数”.
其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点D在线段BC的延长线上,且
BC
=2
CD
,点O在线段CD上(与点C,D不重合)若
AO
=x
AB
+(1-x)
AC
,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列结论中:
①若不等式f(x)>0的解集为(-∞,m)∪(n,+∞),则f(m)=f(n)=0;
②命题x,y∈R,若x2+y2=0,则x=0或y=0的否命题是假命题;
③在△ABC中,A>B的充要条件是sinA>sinB;
④若非零向量
a
b
c
两两成的夹角均相等,则夹角的大小为120°;
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,已知AB=4,AD=3,∠BAD=60°,点E,F分别满足
AE
=2
ED
DF
=
FC
,则
AF
BE
=
 

查看答案和解析>>

同步练习册答案