精英家教网 > 高中数学 > 题目详情
19.已知关于x的方程x2+2mx+2m+1=0满足下列条件时,m的取值范围.
(1)方程的两根都大于1;
(2)方程的两根一个比1大,一个比1小.

分析 (1)令f(x)=x2+2mx+2m+1,则由题意可得 $\left\{\begin{array}{l}{-m>1}\\{△{=(2m)}^{2}-4(2m+1)>0}\\{f(1)=1+2m+2m+1>0}\end{array}\right.$,由此求得m的范围.
(2)根据f(1)=4m+2<0,求得m的范围.

解答 解:(1)∵关于x的方程x2+2mx+2m+1=0的两根都大于1,令f(x)=x2+2mx+2m+1,
则有$\left\{\begin{array}{l}{-m>1}\\{△{=(2m)}^{2}-4(2m+1)>0}\\{f(1)=1+2m+2m+1>0}\end{array}\right.$,求得m∈∅,即不存在实数m,使方程的两根都大于1.
(2)方程x2+2mx+2m+1=0的两根一个比1大,一个比1小,则f(1)=4m+2<0,求得m<-$\frac{1}{2}$.

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化、分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知a≥0,b≥0,a+b=1,求a4+b4的范围$[\frac{1}{8},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)若a是正实数,2a2+3b2=10,求a$\sqrt{2+{b}^{2}}$的最大值.
(2)已知a>0,b>0,a+b=1,求$\sqrt{a+\frac{1}{2}}$+$\sqrt{b+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.6个不同颜色的球放在5个不同的盒子中,要求每个盒子至少放一个球,有多少种方法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和Sn满足Sn=2an-a1,且$\sqrt{{a}_{3}}$是a1,a2的等比中项.
(1)求a1
(2)设bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,数列{bn}的前n项和为Tn,若Tn=$\frac{19}{20}$,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个命题中是真命题的是(  )
①存在x∈(0,+∞),使不等武2x<3x成立;
②不存在x∈(0,1),使不等式log2x<log3x成立;
③对任意的x∈(0,1),不等式log2x<log3x成立;
④对任意的x∈(0,+∞),不等式log2x<$\frac{1}{x}$成立.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一个自然数的1000倍恰有1000个约数,那么这个自然数本身最少有多少个约数?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在不等式组$\left\{\begin{array}{l}{x-\sqrt{3}y+3≥0}\\{x+\sqrt{3}y+3≥0}\\{x≤3}\end{array}\right.$表示的平面区域内作圆M,则最大圆M的标准方程(x-1)2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知奇函数f(x)定义在(-1,1)上,并在定义域上单调递减,且满足f(-a)+f(1-a2)<0,求a的取值范围.

查看答案和解析>>

同步练习册答案