·ÖÎö £¨1£©ÓÉÌâÒâk£¾0£¬Ô²ÐÄCµ½Ö±ÏßlµÄ¾àÀëd=$\frac{4k}{\sqrt{1+{k}^{2}}}$£¬ÓÉÖ±ÏßlÓëÔ²CÏàÇеÃk=$\frac{\sqrt{15}}{15}$£¬ÓÉ´ËÄÜÇó³öÖ±Ïßl£®
£¨2£©£¨i£©ÓÉÌâÒâµÃ0£¼AB=2$\sqrt{1-{d}^{2}}$¡Ü$\frac{2\sqrt{17}}{17}$£¬´Ó¶ød=$\frac{4k}{\sqrt{1+{k}^{2}}}$£¬ÓÉ´ËÄÜÇó³öʵÊýkµÄȡֵ·¶Î§£®
£¨ii£©lAM£ºy=k1£¨x-3£©£¬ÓëÔ²C£º£¨x-4£©2+y2=1ÁªÁ¢£¬µÃ$£¨x-3£©[£¨1+{{k}_{1}}^{2}£©x-£¨3{{k}_{1}}^{2}+5£©]=0$£¬ÓÉΤ´ï¶¨ÀíÇó³öA£¬BµÄ×ø±ê£¬´Ó¶øµÃµ½£¨1+k1k2£©£¨3k1+5k2£©=0£¬ÓÉ´ËÄÜÖ¤Ã÷´æÔÚ³£Êýa=2£¬Ê¹µÃk1+k2=2k3ºã³ÉÁ¢£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâk£¾0£¬
¡àÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀëd=$\frac{4k}{\sqrt{1+{k}^{2}}}$£¬
¡ßÖ±ÏßlÓëÔ²CÏàÇУ¬
¡àd=$\frac{4k}{\sqrt{1+{k}^{2}}}$=1£¬½âµÃk=$\frac{\sqrt{15}}{15}$£¬
¡àÖ±Ïßl£ºy=$\frac{\sqrt{15}}{15}$x£®
£¨2£©£¨i£©ÓÉÌâÒâµÃ0£¼AB=2$\sqrt{1-{d}^{2}}$¡Ü$\frac{2\sqrt{17}}{17}$£¬
½âµÃ$\frac{4\sqrt{17}}{17}¡Üd£¼1$£¬
ÓÉ£¨1£©Öªd=$\frac{4k}{\sqrt{1+{k}^{2}}}$£¬
¡à$\frac{4\sqrt{17}}{17}¡Ü\frac{4k}{\sqrt{1+{k}^{2}}}£¼1$£¬
¡à$\frac{1}{4}¡Ük£¼\frac{\sqrt{15}}{15}$£®
£¨ii£©lAM£ºy=k1£¨x-3£©£¬
ÓëÔ²C£º£¨x-4£©2+y2=1ÁªÁ¢£¬
µÃ$£¨x-3£©[£¨1+{{k}_{1}}^{2}£©x-£¨3{{k}_{1}}^{2}+5£©]=0$£¬
¡à${x}_{M}=3£¬{x}_{A}=\frac{3{{k}_{1}}^{2}+5}{1+{{k}_{1}}^{2}}$£¬
¡àA£¨$\frac{3{{k}_{1}}^{2}+5}{1+{{k}_{1}}^{2}}$£¬$\frac{2{k}_{1}}{1+{{k}_{1}}^{2}}$£©£¬
ͬÀí£¬µÃB£¨$\frac{5{{k}_{2}}^{2}+3}{1+{{k}_{2}}^{2}}$£¬$\frac{-2{k}_{2}}{1+{{k}_{2}}^{2}}$£©£¬
¡ßkOA=kOB£¬
¡à$\frac{\frac{2{k}_{1}}{1+{{k}_{1}}^{2}}}{\frac{3{{k}_{1}}^{2}+5}{1+{{k}_{1}}^{2}}}$=$\frac{\frac{-2{k}_{2}}{1+{{k}_{2}}^{2}}}{\frac{5{{k}_{2}}^{2}+3}{1+{{k}_{2}}^{2}}}$£¬¼´£¨1+k1k2£©£¨3k1+5k2£©=0£¬
¡ßk1k2¡Ù-1£¬
¡à${k}_{2}=-\frac{3}{5}{k}_{1}$£¬
ÉèP£¨x0£¬y0£©£¬
Ôò$\left\{\begin{array}{l}{{y}_{0}={k}_{1}£¨{x}_{0}-3£©}\\{{y}_{0}={k}_{2}£¨{x}_{0}-5£©}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{{x}_{0}=\frac{3{k}_{1}-5{k}_{2}}{{k}_{1}-{k}_{2}}}\\{{y}_{0}=\frac{-2{k}_{1}{k}_{2}}{{k}_{1}-{k}_{2}}}\end{array}\right.$£®
¡àP£¨$\frac{3{k}_{1}-5{k}_{2}}{{k}_{1}-{k}_{2}}$£¬$\frac{-2{k}_{1}{k}_{2}}{{k}_{1}-{k}_{2}}$£©£¬¼´P£¨$\frac{15}{4}$£¬$\frac{3{k}_{1}}{4}$£©£¬
¡à${k}_{3}=\frac{\frac{3{k}_{1}}{4}}{\frac{15}{4}}$=$\frac{{k}_{1}}{5}$£¬
¡à${k}_{1}+{k}_{2}=\frac{2}{5}{k}_{1}=2{k}_{3}$£¬
¡à´æÔÚ³£Êýa=2£¬Ê¹µÃk1+k2=2k3ºã³ÉÁ¢£®
µãÆÀ ±¾Ì⿼²éÖ±Ïß·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßµÄбÂʵÄȡֵ·¶Î§µÄÇ󷨣¬¿¼²éÊÇ·ñ´æÔÚʹµÃµÈʽºã³ÉÁ¢µÄ³£ÊýµÄÅжÏÓëÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÔ²µÄÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6¦Ð | B£® | 12¦Ð | C£® | 8¦Ð | D£® | 16¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨x£©=3x3+2x2+1 | B£® | f£¨x£©=${x^{-\frac{1}{2}}}$ | C£® | f£¨x£©=3x | D£® | f£¨x£©=$\frac{{\sqrt{4-{x^2}}}}{{|{x+3}|-3}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | A+2 | B£® | 2013 | C£® | 2014 | D£® | 2015 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Èñ½ÇÈý½ÇÐÎ | B£® | ¶Û½ÇÈý½ÇÐÎ | ||
| C£® | µÈÑüÖ±½ÇÈý½ÇÐÎ | D£® | µÈÑü»òÖ±½ÇÈý½ÇÐÎ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com