精英家教网 > 高中数学 > 题目详情
13.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n个三角形数为$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形中第n个数的表达式:
三角形数N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形数N(n,4)=n2
五边形数N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n,
六边形数N(n,6)=2n2-n,
据此可推测N(n,k)的表达式,由此计算N(8,22)=(  )
A.284B.568C.1136D.2272

分析 观察已知式子的规律,并改写形式,从式子本身特点以及所在序号,找出规律,归纳可得N(n,k)=$\frac{k-2}{2}{n}^{2}+\frac{4-k}{2}n$,把n=8,k=22代入可得答案.

解答 解:原已知式子可化为:
三角形数N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n=$\frac{3-2}{2}$n2+$\frac{4-3}{2}$n
正方形数N(n,4)=n2=$\frac{4-2}{2}$n2+$\frac{4-4}{2}n$;
五边形数N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n=$\frac{5-2}{2}{n}^{2}+\frac{4-5}{2}n$,
六边形数N(n,6)=2n2-n=$\frac{6-2}{2}{n}^{2}+\frac{4-6}{2}n$,

由归纳推理可得N(n,k)=$\frac{k-2}{2}{n}^{2}+\frac{4-k}{2}n$,
故N(8,22)=$\frac{22-2}{2}×{8}^{2}+\frac{4-22}{2}×8$=568;
故选B.

点评 本题考查了归纳推理;归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如果$\frac{1-cosα}{sinα}=\frac{1}{2}$,那么sinα+cosα的值是(  )
A.$\frac{7}{5}$B.$\frac{8}{5}$C.1D.$\frac{29}{15}$

查看答案和解析>>

科目:高中数学 来源:2017届宁夏高三上月考一数学(文)试卷(解析版) 题型:解答题

已知集合.

(1)求

(2)若非空集合,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.与35°角的终边相同的角是(  )
A.-35°+k•360°,k∈ZB.-325°+k•360°,k∈Z
C.325°+k•360°,k∈ZD.35°+(2k+1)×180°,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据下列各数列的通项公式,写出数列的前5项:
(1)an=10n;(2)an=3n+1;(3)an=5×(-1)n+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.20B.25C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<1}\\{f(x-1),x≥1}\end{array}\right.$,则f(log25)=(  )
A.$\frac{5}{8}$B.$\frac{5}{4}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线y=$\frac{2}{x}$与直线y=x-1及直线x=1所围成的封闭图形的面积为(  )
A.$\frac{3}{4}$B.$\frac{5}{2}$C.4-2ln2D.2ln2$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等比数列{an}中,a5-a1=15,a4-a2=6,则a3=(  )
A.-4B.4C.-4或4D.-8或8

查看答案和解析>>

同步练习册答案