精英家教网 > 高中数学 > 题目详情
2.曲线y=$\frac{2}{x}$与直线y=x-1及直线x=1所围成的封闭图形的面积为(  )
A.$\frac{3}{4}$B.$\frac{5}{2}$C.4-2ln2D.2ln2$-\frac{1}{2}$

分析 求得交点坐标,可得被积区间,再用定积分表示出曲线y=$\frac{2}{x}$与直线y=x-1及x=1围成的封闭图形的面积,即可求得结论

解答 解:画图得三个交点分别为(1,0),(1,2),(2,1),
故曲线y=$\frac{2}{x}$与直线y=x-1及直线x=1所围成的封闭图形的面积为
S=${∫}_{1}^{2}$($\frac{2}{x}$-x+1)
=(2lnx-$\frac{1}{2}{x}^{2}$+x)|${\;}_{1}^{2}$=2ln2-2+2+$\frac{1}{2}$-1=2ln2-$\frac{1}{2}$,
故选:D

点评 本题考查导数知识的运用,考查利用定积分求面积,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届陕西汉中城固县高三10月调研数学(理)试卷(解析版) 题型:选择题

若变量满足条件的最大值是( )

A.3 B.2

C.1 D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n个三角形数为$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形中第n个数的表达式:
三角形数N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形数N(n,4)=n2
五边形数N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n,
六边形数N(n,6)=2n2-n,
据此可推测N(n,k)的表达式,由此计算N(8,22)=(  )
A.284B.568C.1136D.2272

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,角A、B、C的对边分别为a、b、c,且$\frac{2a}{bsinA}$=3,则sin(π+B)等于(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某冻品店为了解气温对其销售量的影响,随机记录了该店1月份中5天的日销售量y(单位:千克)与该地当日最低气温x(单位:℃)的数据作为样本,如表:
x36989
y1210887
(1)利用最小二乘法求出y与x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)设该地1月份的日最低气温X~N(μx,σx2),其中μx近似为样本平均数$\overline{x}$,σx2近似为样本方差Sx2,该地1月份的最高气温ξ与最低气温x的关系为ξ=2x+1且ξ~N(μξ,σξ2,)),其中μξ近似为最高气温的平均数,σξ2近似为最高气温的方差sξ2,求p(10.4≤ξ≤24.2).
附:①$\sqrt{130}$≈11.5,$\sqrt{3.2}$≈1.8,若X~N(μ,σ2),
则p(μ-σ≤ξ≤μ+σ)=0.6826,p(μ-2σ≤ξ≤μ+2σ)=0.9544
附:②回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知边长为3的等边三角形ABC的三个顶点都在以O为球心的球面上,若三棱锥O-ABC的体积为$\frac{3}{2}$$\sqrt{3}$,则球的表面积为28π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.以下四个命题:
①对立事件一定是互斥事件;
②函数y=x+$\frac{1}{x}$的最小值为2;
③八位二进制数能表示的最大十进制数为256;
④在△ABC中,若a=80,b=150,A=30°,则该三角形有两解.
其中正确命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若两个正实数x,y满足$\frac{1}{x}$+$\frac{1}{y}$=1,则x+2y的取值范围是[3+2$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=(1+cos2x)sin2x的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案