精英家教网 > 高中数学 > 题目详情
15.已知过点A(0,3)的圆C,圆心在y轴的负半轴上,且半径为5.
(1)求圆C的标准方程;
(2)若过点M(-3,-3)的直线l被圆C的所截得的弦长为$4\sqrt{5}$,求直线l的方程.

分析 (1)设圆C的圆心坐标为(0,b)(b<0),则圆的标准方程为x2+(y-b)2=25,代入点的坐标求解b,然后求出圆的方程.
(2)设直线l的方程为y+3=k(x+3),求出圆心C坐标为(0,-2),半径为5,利用点到直线的距离公式转化求解即可.

解答 解:(1)由题意可设圆C的圆心坐标为(0,b)(b<0),则圆的标准方程为x2+(y-b)2=25,
将点A(0,3)代入,得(3-b)2=25,解得b=-2,或b=8(不合题意)
故所求圆C的标准方程为x2+(y+2)2=25.…(6分)
(2)由题意,可设直线l的方程为y+3=k(x+3),即kx-y+3k-3=0,…(7分)
又由(1)得圆心C坐标为(0,-2),半径为5,
则$\frac{{|{2+3k-3}|}}{{\sqrt{{k^2}+1}}}=\sqrt{{5^2}-{{({\frac{{4\sqrt{5}}}{2}})}^2}}$,解得$k=-\frac{1}{2}$,或k=2,…(10分)
所以所求直线l的方程为$y+3=-\frac{1}{2}×({x+3})$,或y+3=2×(x+3).…(11分)
即x+2y+9=0,或2x-y+3=0.…(12分)

点评 本题考查直线与圆的位置关系的综合应用,切线方程的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若曲线${C_1}:y=1+\sqrt{-{x^2}+2x}$与曲线C2:(y-1)•(y-kx-2k)=0有四个不同的交点,则实数k的取值范围为($\frac{1}{2}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正项等比数列{an}的公比为q,且$\frac{S_3}{a_3}=3$,则公比q=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用简单随机抽样方法从有25名女生和35名男生的总体中,推选5名学生参加健美操活动,则某名女生被抽到的机率是(  )
A.$\frac{1}{5}$B.$\frac{1}{7}$C.$\frac{1}{12}$D.$\frac{1}{60}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-ax(a为常数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a>0,求不等式f(x)-f($\frac{2}{a}$-x)>0的解集;
(Ⅲ)若存在两个不相等的整数x1,x2满足f(x1)=f(x2),求证:x1+x2>$\frac{2}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,内角A,B,C所对的边分别是a,b,c,若B=30°,$c=2\sqrt{3}$,b=2,则C=(  )
A.$\frac{π}{3}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{π}{4}$或$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知f(x+1)=4x2+2x+1求f(x)的解析式.
(2)若函数f(x)是二次函数且满足f(x+2)-2f(x)=x2-5x,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个关于数列命题:
(1)若{an}是等差数列,则三点$(10,\frac{{{S_{10}}}}{10})$、$(100,\frac{{{S_{100}}}}{100})$、$(110,\frac{{{S_{110}}}}{110})$共线;
(2)若{an}是等比数列,则Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比数列;
(3)等比数列{an}的前n项和为Sn,若对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b≠0,b≠1,b、r均为常数)的图象上,则r的值为-1.
(4)对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an}的“差数列”的通项为2n,则数列{an}的前n项和Sn=2n+1-2
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z满足(2-i)z=1+2i,则z=(  )
A.-2iB.$\frac{4}{5}+i$C.iD.$\frac{4}{5}+\frac{3}{5}i$

查看答案和解析>>

同步练习册答案