精英家教网 > 高中数学 > 题目详情
5.若曲线${C_1}:y=1+\sqrt{-{x^2}+2x}$与曲线C2:(y-1)•(y-kx-2k)=0有四个不同的交点,则实数k的取值范围为($\frac{1}{2}$,$\frac{3}{4}$).

分析 作出两曲线图象,根据交点个数判断直线的斜率范围即可.

解答 解:由y=1+$\sqrt{-{x}^{2}+2x}$得(x-1)2+(y-1)2=1(y≥1),
曲线C1表示以(1,1)为圆心以1为半径的上半圆,
显然直线y=1与曲线C1有两个交点,交点为半圆的两个端点.
∴直线y=kx+2k=k(x+2)与半圆有2个除端点外的交点,

当直线y=k(x+2)经过点(0,1)时,k=$\frac{1}{2}$,
当直线y=k(x+2)与半圆相切时,$\frac{|3k-1|}{\sqrt{{k}^{2}+1}}$=1,解得k=$\frac{3}{4}$或k=0(舍),
∴当$\frac{1}{2}$<k<$\frac{3}{4}$时,直线y=k(x+2)与半圆有2个除端点外的交点,
故答案为:$(\frac{1}{2},\frac{3}{4})$

点评 本题考查了方程解与函数图象的关系,直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在△ABC中,若(a+b+c)(b+c-a)=3bc,则∠A等于(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}或\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)中,若过双曲线左顶点A斜率为1的直线交右支于点B,点B在x轴上的射影恰为双曲线的右焦点F,则该双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“方程x2-4=0的解是x=±2”中,使用的逻辑联结词的情况是(  )
A.没有使用联结词B.使用了逻辑联结词“或”
C.使用了逻辑联结词“且”D.使用了逻辑联结词“非”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在二项式(1+x)n(n∈N*)的展开式中,存在着系数之比为5:7的相邻两项,则指数n的最小值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在正项等差数列{an}中有$\frac{{{a_{41}}+{a_{42}}+…+{a_{60}}}}{20}=\frac{{{a_1}+{a_2}+…+{a_{100}}}}{100}$成立,则在正项等比数列{bn}中,类似的结论为$\root{20}{{b}_{41}•{b}_{42}•{b}_{43•}…•{b}_{60}}=\root{100}{{b}_{1}•{b}_{2}•{b}_{3}•…•{b}_{100}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如右的列联表,经计算,统计量K2的观测值k2≈5.762,参照附表,则所得到的统计学结论为:有(  )把握认为“爱好该项运动与性别有关”.
总计
爱好104050
不爱好203050
总计3070100
A.0.25%B.2.5%C.97.5%D.99.75%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合M={3,a},N={x|x2-3x<0,x∈Z},M∩N={1},则M∪N为(  )
A.{1,3,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知过点A(0,3)的圆C,圆心在y轴的负半轴上,且半径为5.
(1)求圆C的标准方程;
(2)若过点M(-3,-3)的直线l被圆C的所截得的弦长为$4\sqrt{5}$,求直线l的方程.

查看答案和解析>>

同步练习册答案