精英家教网 > 高中数学 > 题目详情
4.某中学高一有21个班、高二有14个班、高三有7个班,现采用分层抽样的方法从这些班中抽取6个班对学生进行视力检查,若从抽取的6个班中再随机抽取2个班做进一步的数据分析,则抽取的2个班均为高一的概率是(  )
A.$\frac{1}{5}$B.$\frac{1}{3}$C.$\frac{3}{5}$D.$\frac{2}{3}$

分析 根据方差抽样的定义即可求应从各年级分别抽取的班数,根据古典概型的概率公式即可求出对应的概率.

解答 解:∵高一,高二,高三的班级数比为21:14:7=3:2:1,
则现采用分层抽样的方法从这些班中抽取6个班,则高一,高二,高三的班数分别为3,2,1.分别
若从抽取的6个班高三班级记为a,高二的两个班级记为b,c,高一的三个班级记为A,B,C,
则抽取2人的结果是(a,b),(a,c),(a,A),(a,B),(a,C),(b,c),(b,A),(b,B),(b,C),(c,A),(c,B),(c,C),
(A,B),(A,C),(B,C),共15种结果.
抽取的2人均为高一班级(A,B),(A,C),(B,C),共3种结果.
则抽取的2个班均为高一的概率是P=$\frac{3}{15}$=$\frac{1}{5}$,
故选:A.

点评 本题主要考查分层抽样的应用以及古典概率的计算,利用列举法是解决本题概型的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(℃)与该奶茶店的这种饮料销量y(杯),得到如下数据:
日    期1月11日1月12日1月13日1月14日1月15日
平均气温x(℃)91012118
销量y(杯)2325302621
(1)若从这五组数据中随机抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$.
(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}},\widehata=\overline y-\widehatb\overline x$.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cosx•sin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R.
(Ⅰ)求f(x)的最小正周期、对称轴和单调递增区间;
(Ⅱ)若函数g(x)与f(x)关于直线x=$\frac{π}{4}$对称,求g(x)在闭区间[-$\frac{π}{4}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△AOB中,OA=OB=2,
(1)如图①:若AO⊥OB,点P为△AOB所在平面上的一个动点,且满足PO=3,求$\overrightarrow{PB}$•$\overrightarrow{OA}$的取值范围;
(2)如图②:若|$\overrightarrow{OA}$+$\overrightarrow{OB}$|≤$\frac{\sqrt{3}}{3}$|$\overrightarrow{AB}$|,求$\overrightarrow{OA}$与$\overrightarrow{OB}$所成夹角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.sin$\frac{4π}{3}$=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.猎人在距离90米射击一野兔,其命中率为$\frac{1}{3}$.如果第一次射击未命中,则猎人进行第二次射击但距离为120米.已知猎人命中概率与距离平方成反比,则猎人两次射击内能命中野兔的概率为$\frac{11}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的.
(1)直接写出∠DC1D1在图中的度数和它表示的角的真实度数.
(2)求∠A1C1D的真实度数.
(3)设BC=1m,如果用图示中这样一个装置来盛水,那么最多能盛多少体积的水?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平行四边形ABCD的对角线AC与BD相交于O,则(  )
A.$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{DB}$B.$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{BC}$C.$\overrightarrow{AB}$+$\overrightarrow{BO}$=$\overrightarrow{OC}$D.$\overrightarrow{AB}$-$\overrightarrow{BC}$=$\overrightarrow{BD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),若a=2b,则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$2\sqrt{5}$D.3

查看答案和解析>>

同步练习册答案