5£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÔÚxÖáÉϵĶ¥µã·Ö±ðΪA£¬B£¬ÇÒÒÔ×ø±êÔ­µãΪԲÐÄ£¬ÒÔÍÖÔ²¶ÌÖ᳤Ϊֱ¾¶µÄÔ²¾­¹ýÍÖÔ²µÄ½¹µã£¬PΪÍÖÔ²Éϲ»Í¬ÓÚA¡¢BµÄÒ»¶¯µã£®
£¨1£©ÈôkAP¡ÁkBP=-$\frac{1}{2}$£¬ÇÒ¶ÌÖ᳤Ϊ2£¬ÇóÍÖÔ²·½³Ì£¿
£¨2£©Á¬½áPÓëÔ­µãO½»ÍÖÔ²ÓÚQ£¬¹ýQ×÷QN¡ÍPQ½»ÍÖÔ²ÓÚN£¬QM¡ÍxÖáÓÚM£¬ÇóÖ¤£ºP¡¢N¡¢MÈýµã¹²Ïߣ®

·ÖÎö £¨1£©¸ù¾ÝkAP¡ÁkBP=-$\frac{1}{2}$£¬ÇÒ¶ÌÖ᳤Ϊ2£¬½¨Á¢·½³Ì¹ØÏµÇó³öa£¬b¼´¿ÉÇóÍÖÔ²·½³Ì£®
£¨2£©Éè³öP£®M£¬N£¬QµÄ×ø±êÇó³ö¶ÔÓ¦µÄбÂÊ£¬ÀûÓÃбÂÊÏàµÈ¼´¿ÉÖ¤Ã÷Èýµã¹ØÏµ£®

½â´ð ½â£º£¨1£©ÉèµãP£¨x0£¬y0£©£¬
¡ßb=c£¬¡àa=$\sqrt{2}$b£¬
ÔòkAP¡ÁkBP=$\frac{{y}_{0}-0}{{x}_{0}-a}•\frac{{y}_{0}-0}{{x}_{0}+a}$=$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-2{b}^{2}}=-\frac{1}{2}$£¬
¡à$\frac{{{x}_{0}}^{2}}{2{b}^{2}}+\frac{{{y}_{0}}^{2}}{{b}^{2}}=1$£¬
¡àb=1£¬a=$\sqrt{2}$£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£®
£¨2£©ÉèP£¨x0£¬y0£©£¬N£¨x1£¬y1£©£¬
ÔòQ£¨-x0£¬-y0£©£¬M£¨-x0£¬0£©£¬
Ôò$\left\{\begin{array}{l}{\frac{{{x}_{0}}^{2}}{2}+{{y}_{0}}^{2}=1}\\{\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1}\end{array}\right.$£¬Á½Ê½×÷²îµÃ$\frac{{y}_{0}+{y}_{1}}{{x}_{0}+{x}_{1}}=-\frac{{x}_{0}-{x}_{1}}{2£¨{y}_{0}-{y}_{1}£©}$  ¢Ù£¬
¡ßQN¡ÍPQ£¬
¡àkQN¡ÁkPQ=$\frac{{y}_{0}+{y}_{1}}{{x}_{0}+{x}_{1}}$•$\frac{{y}_{0}}{{x}_{0}}$=-1£¬¢Ú£¬
¢Ù´úÈë¢ÚµÃ$\frac{{y}_{1}}{{x}_{0}+{x}_{1}}=\frac{{y}_{0}}{2{x}_{0}}$£¬
¼´kMN=kPM£¬¼´P¡¢N¡¢MÈýµã¹²Ïߣ®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²·½³ÌµÄÇó½âÒÔ¼°Èýµã¹ØÏµµÄÖ¤Ã÷£¬ÀûÓÃбÂÊÖ®¼äµÄ¹ØÏµÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁÐËĸöÃüÌ⣺
¢ÙÒÑÖª¦Î·þ´ÓÕý̬·Ö²¼N£¨0£¬¦Ò2£©£¬ÇÒP£¨-2¡Ü¦Î¡Ü0£©=0.4£¬ÔòP£¨¦Î£¾2£©=0.2
¢Ú»Ø¹éÖ±Ïß¾ÍÊÇÉ¢µãͼÖо­¹ýÑù±¾Êý¾Ýµã×î¶àµÄÄÇÌõÖ±Ïß
¢ÛÃüÌâ¡°ÒÑÖªx£¬y¡ÊR£¬Èôx+y¡Ù3£¬Ôòx¡Ù2»òy¡Ù1¡±ÊÇÕæÃüÌâ
¢ÜÒÑÖªµãA£¨-1£¬0£©£¬B£¨1£¬0£©£¬Èô|PA|-|PB|=2£¬Ôò¶¯µãPµÄ¹ì¼£ÎªË«ÇúÏßµÄÒ»Ö§
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¶ÔÓÚ²»µÈʽ$\frac{{x}^{2}+1+c}{\sqrt{{x}^{2}+c}}$¡Ý$\frac{1+c}{\sqrt{c}}$£¬x¡ÊR£®
£¨1£©¾­ÑéÖ¤c=1£¬2£¬3ʱ£¬²»µÈʽ¶¼³ÉÁ¢£¬ÊÔÎÊ£¬²»µÈʽÊÇ·ñ¶ÔÈÎÒâµÄÕýÊýc¶¼³ÉÁ¢£¿ËµÃ÷ÀíÓÉ£®
£¨2£©¶ÔÒÑÖªµÄÕýÊýc£¬·¢ÏÖ²»µÈʽÓÒ±ß$\frac{1+c}{\sqrt{c}}$¸Ä³ÉijЩֵ£¬Èç-c£¬0£¬²»µÈʽ¶¼³ÉÁ¢£¬ÊÔÇó³öËùÓÐÕâÑùÖµµÄ¼¯ºÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÏòÁ¿$\overrightarrow{AB}$=£¨1£¬2£©£¬$\overrightarrow{OB}$=£¨0£¬1£©£¬ÔòÏÂÁи÷µãÖÐÔÚÖ±ÏßABÉϵÄÊÇ£¨¡¡¡¡£©
A£®£¨0£¬3£©B£®£¨1£¬1£©C£®£¨2£¬4£©D£®£¨2£¬5£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ä³¸ßÒ»ÐÂÉú¾üѵÖвμӴò°Ð²âÊÔ£¬ÓÐÈý´Î´ò°Ð»ú»á£¬´òÖÐÒ»´Î¼´ÎªÍ¨¹ý²âÊÔ£¬µÚÒ»´Î´òÖеĸÅÂÊΪ$\frac{1}{2}$£»ÈôµÚÒ»´Î´ò²»ÖУ¬µÚ¶þ´Î´ò°ÐÐÄÀíѹÁ¦Ôö´ó£¬ÃüÖеĸÅÂʽµµÍΪ$\frac{1}{3}$£»ÈôµÚ¶þ´ÎÈÔ´ò²»ÖУ¬ÓÉÓÚÐÄÀíѹÁ¦Ôö´ó£¬ÃüÖеĸÅÂʽµµÍΪ$\frac{1}{4}$£¬ÊÔÇó¸ÃѧÉúͨ¹ý²âÊԵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èô¹ØÓÚxµÄ·½³Ì|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|-kx-1=0ÓÐÎå¸ö»¥²»ÏàµÈµÄʵ¸ù£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-$\frac{1}{4}$£¬$\frac{1}{4}$£©B£®£¨-¡Þ£¬-$\frac{1}{4}$£©¡È£¨$\frac{1}{4}$£¬+¡Þ£©C£®£¨-¡Þ£¬-$\frac{1}{8}$£©¡È£¨$\frac{1}{8}$£¬+¡Þ£©D£®£¨-$\frac{1}{8}$£¬0£©¡È£¨0£¬$\frac{1}{8}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª·½³Ì$\frac{1}{{e}^{x}}$-$\frac{a}{x}$=0ÓÐÁ½¸ö²»µÈµÄ·ÇÁã¸ù£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨0£¬$\frac{1}{e}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚбÈýÀâÖùABC-A1B1C1ÖУ¬OÊÇACµÄÖе㣬A1O¡ÍÆ½ÃæABC£¬¡ÏBCA=90¡ã£¬AA1=AC=BC£®
£¨¢ñ£©ÇóÖ¤£ºAC1¡ÍÆ½ÃæA1BC£»
£¨¢ò£©ÈôAA1=2£¬ÇóµãCµ½Æ½ÃæA1ABB1µÄ¾àÀ룮£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Á¬ÐøÖÀÒ»Õý·½Ìå÷»×Ó£¨¸÷ÃæµÄµãÊý·Ö±ðΪ1£¬2£¬3£¬4£¬5£¬6£©Á½´ÎµÃµ½µÄµãÊý·Ö±ðΪm¡¢n£¬×÷ÏòÁ¿$\overrightarrow a=£¨m£¬n£©$£¬Èô$\overrightarrow b=£¨1£¬-1£©$£¬Ôò$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½Ç³ÉΪֱ½ÇÈý½ÇÐÎÄڽǵĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{5}{9}$B£®$\frac{7}{12}$C£®$\frac{5}{12}$D£®$\frac{7}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸