精英家教网 > 高中数学 > 题目详情
如图所示几何体是正方体ABCD-A1B1C1D1截去三棱锥B1-A1BC1后所得,点M为A1C1的中点.
(1)求证:A1C1⊥平面MBD;
(2)当正方体棱长等于
3
时,求三棱锥D-A1BC1的体积.
考点:直线与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(1)分别证明出DM⊥A1C1和BM⊥A1C1,进而根据线面垂直的判定定理证明出A1C1⊥平面MBD;
(2)先求得M到BD的距离进而求得△MBD的面积,进而利用体积公式求得答案.
解答: 解:
(1)证明:因为几何体是正方体ABCD-A1B1C1D1截取三棱锥B1-A1BC1后所得,
DA1=DC1
A1M=C1M
⇒DM⊥A1C1
BA1=BC1
A1M=C1M
⇒BM⊥A1C1
DM∩BM=M
A1C1⊥平面MBD

(2)由题意知BD=
6
,点M到BD的距离为
3

则△MBD的面积为S△MBD=
1
2
×
6
×
3
=
3
2
2
,由(1)知A1C1⊥平面MBD
所以VD-A1BC1=
1
3
S△MBDA1C1=
1
3
×
3
2
2
×
6
=
3
点评:本小题以正方体为载体,考查立体几何的基础知识.本题通过分层设计,考查了空间直线与平面的垂直关系,简单几何体体积的求法,考查学生的空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c(b,c∈R﹚.
(1)|f﹙1﹚|≤|f﹙-1﹚|≤
1
4
成立,求b2+c2的取值范围;  
(2)若f(x)在区间(0,1)上有两个零点,求证:c2+﹙1+b﹚c≤
1
16

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式
(1)(x2-x)2-4(x2-x)-12<0
(2)(x-2)(ax-2)>0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:23+lo
g
 
2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C对应的边为a,b,c,且2R为△ABC的外接圆的直径,f(C)=2R(sinAsinC+sinBcosC)+1.
(1)若a=b,求函数f(C)的单调区间;
(2)若a2+b2=2a+2
3
b-4,f(C)≥2,求角C的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥A-BCD中,E,F分别是AB,CD的中点,试比较EF和
1
2
(AD+BC)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=
2
,D为AA1中点,BD与AB1交于点O,CO丄侧面ABB1A1
(Ⅰ)证明:BC丄AB1
(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=
2
,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为
3
2
?若存在,求出
AQ
QD
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(
x
+2)=x+2
x
,则函数f(x)的值域为
 

查看答案和解析>>

同步练习册答案