精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C对应的边为a,b,c,且2R为△ABC的外接圆的直径,f(C)=2R(sinAsinC+sinBcosC)+1.
(1)若a=b,求函数f(C)的单调区间;
(2)若a2+b2=2a+2
3
b-4,f(C)≥2,求角C的取值范围.
考点:余弦定理,三角函数中的恒等变换应用
专题:三角函数的图像与性质,解三角形
分析:(1)利用正弦定理及三角恒等变换可求得f(C)=
2
asin(C+
π
4
)+1,从而可求得函数f(C)的单调区间;
(2)由a2+b2=2a+2
3
b-4,可取得a=1,b=
3
;又f(C)≥2,于是可得sin(C+
π
4
)≥
2
2
,利用正弦函数的单调性与最值即可求得角C的取值范围.
解答: 解:(1)在△ABC中,∵a=b,
∴f(C)=2R(sinAsinC+sinBcosC)+1=asinC+acosC+1=
2
asin(C+
π
4
)+1,
π
4
<C+
π
4
π
2
,即0<C<
π
4
时,函数f(C)单调递增;
π
2
<C+
π
4
4
,即
π
4
<C<π时,函数f(C)单调递减;
∴函数f(C)的单调递增区间为(
π
4
,π),单调递减区间为(
π
4
,π);
(2)∵a2+b2=2a+2
3
b-4,
∴(a-1)2+(b-
3
)2
=0,
∴a=1,b=
3

又f(C)=
2
asin(C+
π
4
)+1=
2
sin(C+
π
4
)+1≥2,
∴sin(C+
π
4
)≥
2
2

π
4
≤C+
π
4
4
,解得0≤C+
π
4
π
2
,又C>0,
∴角C的取值范围为(0,
π
2
].
点评:本题考查三角函数中的恒等变换应用,着重考查正弦定理及复合三角函数的性质,考查等价转化思想与运算期间能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,有两条相交直线成60°角的直路X′X,Y′Y,交点是O,甲、乙两人分别在OX,OY上,甲的起始位置距离O点3km,乙的起始位置距离O点1km,后来甲沿X′X的方向,乙沿Y′Y的方向,两人同时以4km/h的速度步行.
(1)求甲乙在起始位置时两人之间的距离;
(2)设th后甲乙两人的距离为d(t),写出d(t)的表达式;当t为何值时,甲乙两人的距离最短,并求出此时两人的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P(x,y)在曲线
x=-2+cosθ
y=sinθ
(θ为参数,θ∈R)上,则
y
x
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义f(x)*g(x)=
f(x),f(x)+g(x)≥1
g(x),f(x)+g(x)<1
,函数F(x)=(x2-1)*(x)-k的图象与x轴有两个不同的交点,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2loga(x-4)>loga(x-2),(a>1)求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示几何体是正方体ABCD-A1B1C1D1截去三棱锥B1-A1BC1后所得,点M为A1C1的中点.
(1)求证:A1C1⊥平面MBD;
(2)当正方体棱长等于
3
时,求三棱锥D-A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨x=3n+1,n∈Z},B={x丨x=3n+2,n∈Z},M={x丨x=6n+3,n∈Z},若m∈M,问是否有a∈A,b∈B,使m=a+b.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个函数f(x)=8x2+16x-k(k∈R),g(x)=2x3+5x2+4x
(1)若?x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范围;
(2)若?x1,x2∈[-3,3]都有f(x1)≤g(x2)成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:
①sin2θ=cosθ•2sinθ
②sin4θ=cosθ(4sinθ-8sin3θ)
③sin6θ=cosθ(6sinθ-32sin3θ+32sin5θ)
④sin8θ=cosθ(8sinθ-80sin3θ+192sin5θ-128sin7θ)
⑤sin10θ=cosθ(10sinθ-160sin3θ+msin5θ-1024sin7θ+nsin9θ)
则可以推测(1)n=
 
;(2)m=
 

查看答案和解析>>

同步练习册答案