分析 根据数学归纳法证明的步骤,首先验证当n=1时成立,进而假设n=k时等式成立,证明n=k+1时,等式也成立;最后作答即可.
解答 证明:设f(n)=1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1.
(1)当n=1时,左边=1,右边=1,等式成立;
(2)设当n=k时等式成立,即1•k+2•(k-1)+3•(k-2)+…+(k-1)•2+k•1=$\frac{1}{6}$k(k+1)(k+2),
则当n=k+1时,
f(k+1)=1•(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-2]•3+[(k+1)-1]•2+(k+1)•1
=f(k)+1+2+3+…+k+(k+1)
=$\frac{1}{6}$k(k+1)(k+2)+$\frac{1}{2}$(k+1)(k+1+1)
=$\frac{1}{6}$(k+1)(k+2)(k+3)=$\frac{1}{6}$(k+1)[(k+1)+1][(k+1)+2].即当n=k+1时,等式也成立.
∴由(1)(2)可知当n∈N*时等式都成立.
点评 本题考查数学归纳法的证明,需要牢记数学归纳法证明的步骤,特别要注意从k到k+1等式的形式的变化、区别.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10p2 | B. | 12p2 | C. | 14p2 | D. | 16p2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com