精英家教网 > 高中数学 > 题目详情
5.变量x,y满足$\left\{{\begin{array}{l}{3x-y-2≥0}\\{x+2y-3≥0}\\{4x+y-12≤0}\end{array}}\right.$,则(x-3)2+(y-3)2的范围是[$\frac{9}{17},9$].

分析 由约束条件画出可行域,然后利用(x-3)2+(y-3)2的几何意义,即可行域内的动点与定点(3,3)距离的平方求解.

解答 解:由约束条件$\left\{{\begin{array}{l}{3x-y-2≥0}\\{x+2y-3≥0}\\{4x+y-12≤0}\end{array}}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{3x-y-2=0}\\{x+2y-3=0}\end{array}\right.$,解得A(1,1).
(x-3)2+(y-3)2的几何意义为可行域内的动点与定点(3,3)距离的平方.
∵|PA|=$\sqrt{(3-1)^{2}+(3-1)^{2}}=\sqrt{8}$,
而P到x轴上的点(3,0)的距离为3,
点P(3,3)到直线4x+y-12=0的距离为$\frac{|4×3+3-12|}{\sqrt{17}}=\frac{3}{\sqrt{17}}$.
∴(x-3)2+(y-3)2的范围是[$\frac{9}{17},9$].
故答案为:[$\frac{9}{17},9$].

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设全集U=R,集合A={x|y=lgx},B={-1,1},则下列结论正确的是(  )
A.A∩B={-1}B.(∁RA)∪B=(-∞,0)C.A∪B=(0,+∞)D.(∁RA)∩B={-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数$f(x)=\frac{x^2}{x-1},x∈({1,+∞})$的值域为[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=45°,cosB=$\frac{4}{5}$.
(Ⅰ)求sinC的值;
(Ⅱ)若BC=10,D为AB的中点,求AB,CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足:?m,n∈N*都有am•an=am+n,且a1=2.记数列${b_n}=\frac{{{a_n}^2+{a_{2n}}}}{{{a_{2n-1}}}}$的前n项和为Sn,则Sn=4n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.等边三角形的边长为a,它绕其一边所在的直线旋转一周,则所得旋转体的表面积为$\sqrt{3}π$a2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.方程x2+y2+2ax-4y+(a2+a)=0表示一个圆,则a的取值范围是(  )
A.[4,+∞)B.(4,+∞)C.(-∞,4]D.(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.把函数y=sin3x的图象向右平移$\frac{π}{4}$个长度单位,所得曲线的对应函数式(  )
A.y=sin(3x-$\frac{3π}{4}$)B.y=sin(3x+$\frac{π}{4}$)C.y=sin(3x-$\frac{π}{4}$)D.y=sin(3x+$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线(2+a)x+(3-a)y+8-2a=0恒过定点(-$\frac{2}{5}$,-$\frac{12}{5}$).

查看答案和解析>>

同步练习册答案