精英家教网 > 高中数学 > 题目详情
已知函数y=
mx2+8x+n
x2+1
定义域为(-∞,+∞),值域为[1,9],求m,n.
考点:函数的值域,函数的定义域及其求法
专题:函数的性质及应用
分析:本题是由函数的定义域,和值域求式中的参数问题.是运用二次函数中的△≥0求出参数的值,属于比校难的题目了.
解答: 解:将式子变形为(y-m)x2-8x+y-n=0,
当y-m≠0,△=64-4(y-m)(y-n)≥0
即(y-m)(y-n)≤16,∴1,9是方程(y-m)(y-n)=16的两个根,带入得
(1-m)(1-n)=16
(9-m)(9-n)=16

解得m=n=5.
当y-m=0时,m=n=5,也适合题意.
∴m=n=5.
点评:由已知条件求参数的值是高中的一个难点,也是一个重点,本题是借助一元二次方程有解时△≥0恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,P为线段AB的垂直平分线上任意一点,O为平面内的任意一点,设
OA
=
a
OB
=
b
OP
=
p
,求证:
p
•(
a
-
b
)=
1
2
(|
a
|2-|
b
|2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C所对的边分别为a,b,c,面积为S,且满足:S•(tan
C
2
+cot
C
2
)=18.
(1)求ab的值;
(2)若c=3
2
,试确定∠C的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,Sn为其前n项和,若S7=7,S15=75,
(1)求数列{an}的首项和公差;
(2)求数列{
Sn
n
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),直线l:y=2x-6,点R是直线l上的一点,动点P满足
RA
=2
AP

(1)求动点P的轨迹方程;
(2)动点P在运动过程中是否经过圆x2+y2+4x+3=0?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
b-2x
2x+a
是奇函数.
(1)求a,b的值;
(2)用定义证明f(x)在R上为减函数;
(3)若对于任意t∈[-2,2],不等式f(t2-2t)+f(-2t2+k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列动圆圆心M的轨迹方程:
(1)与圆C:(x+2﹚2+y2=2内切,且过点A(2,0);
(2)与圆C1:x2+﹙y-1﹚2=1和圆C2:x2+﹙y+12)=4都外切.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,四边形AA1C1C也为菱形且∠A1AC=∠DAB=60°,平面AA1C1C⊥平面ABCD.
(Ⅰ)证明:BD⊥AA1
(Ⅱ)证明:平面AB1C∥平面DA1C1
(Ⅲ)在棱CC1上是否存在点P,使得平面PDA1和平面DA1C1所成锐二面角的余弦值为
30
31
?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD与梯形CDEF所在的平面互相垂直,CD⊥DE,CF∥DE,CD=CF=2,DE=4,G为AE的中点.
(Ⅰ)求证:FG∥平面ABCD;
(Ⅱ)求证:平面FAD⊥平面FAE;
(Ⅲ)求平面FAE与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案