精英家教网 > 高中数学 > 题目详情
(1)在△ABC中,∠B=30°,且a=2
3
,b=2,解此三角形.
(2)在△ABC中,∠A=45°,∠B=30°,c=10,解此三角形.
考点:解三角形
专题:综合题,解三角形
分析:(1)利用正弦定理可得
2
3
sinA
=
2
sin30°
,求出A,分类讨论,即可解此三角形;
(2)先求出C,再利用正弦定理可得
a
sin45°
=
10
sin105°
=
b
sin30°
,即可得出结论.
解答: 解:(1)∵∠B=30°,且a=2
3
,b=2,
∴利用正弦定理可得
2
3
sinA
=
2
sin30°

∴sinA=
3
2

∵a>b,∠B=30°,
∴A=60°或120°,
A=60°时,C=90°,∴c=
a2+b2
=4;
A=1200°时,C=30°,∴c=b=2;
(2)∵∠A=45°,∠B=30°,∴∠C=105°.
∵c=10,
∴利用正弦定理可得
a
sin45°
=
10
sin105°
=
b
sin30°

∴a=10
3
-10,b=5
6
-5
2
点评:本题考查解三角形,着重考查正弦定理的应用,考查分类讨论思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若全集U={1,2,3,4}且∁UA={2},则集合A的子集共有(  )
A、3个B、5个C、7个D、8个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2
+2lnx,曲线y=f(x)在x=1处的切线斜率为4.
(1)求a的值及切线方程;
(2)点P(x,y)为曲线y=f′(x)上一点,求y-x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市共有100万居民的月收入是通过“工资薪金所得”得到的,如图是抽样调查后得到的工资薪金所得X的频率分布直方图.工资薪金个人所得税税率表如表所示.表中“全月应纳税所得额”是指“工资薪金所得”减去3500元所超出的部分(3500元为个税起征点,不到3500元不缴税).工资个税的计算公式为:“应纳税额”=“全月应纳税所得额”乘以“适用税率”减去“速算扣除数”.


全月应纳税所得额 适用税率(%) 速算扣除数
不超过1500元 3 0
超过1500元至4500元 10 105
超过4500元至9000元 20 555
例如:某人某月“工资薪金所得”为5500元,则“全月应纳税所得额”为5500-3500=2000元,应纳税额为2000×10%-105=95(元)
在直方图的工资薪金所得分组中,以各组的区间中点值代表该组的各个值,工资薪金所得落入该区间的频率作为x取该区间中点值的概率.
(Ⅰ)试估计该市居民每月在工资薪金个人所得税上缴纳的总税款;
(Ⅱ)设该市居民每月从工资薪金所得交完税后,剩余的为其月可支配额y(元),试求该市居民月可支配额y的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

F(x)=sin(x+
4
)+cos(x-
4
),(x∈R)
(1)求F(x)的最小正周期、最小值、图象对称轴方程;
(2)若cos(α-β)=
4
5
,cos(α+β)=-
4
5
,0<α<β≤
π
2
,求F2(β)-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求曲线y=
x
(0≤x≤4)上的一条切线,使此切线与直线x=0,x=4以及曲线y=
x
所围成的平面图形的面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,0),B(0,6),坐标原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|.已知直线l:ax+10y+84-108
3
=0经过P,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设∠AA1H1=α.
(1)试用α表示△AA1H1的面积;
(2)求八角形所覆盖面积的最大值,并指出此时α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,-1),B(2,1),C(t,5)三点在同一直线上,则t=
 

查看答案和解析>>

同步练习册答案