精英家教网 > 高中数学 > 题目详情
19.已知命题p:若x>y,则|x|>|y|;命题q:若x+y=0,则x=-y.有命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q.其中真命题是(  )
A.①③B.②④C.②③D.①④

分析 先判断命题p,q的真假,再利用复合命题真假的判定方法即可得出.

解答 解:命题p:若x>y,则|x|>|y|,是假命题,例如取x=-2,y=-3;
命题q:若x+y=0,则x=-y,是真命题.
有命题①p∧q是假命题;②p∨q是真命题;③p∧(¬q)是假命题;④(¬p)∨q是真命题.
其中真命题是②④.
故选:B.

点评 本题考查了复合命题真假的判定方法、不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,若(c+2a)cosB+b=2bsin2$\frac{C}{2}$,且b=3,则ac的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a=$\sqrt{3}$,且b2+c2=3+bc.
(I)求角A的大小;
(Ⅱ)求bsinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有以下几个命题:
①已知a、b、c∈R,则“a=b”的必要不充分条件是“ac=bc”;
②已知数列{an}满足a1=2,若an+1:an=(n+1):n(n∈N*),则此数列为等差数列;
③f′(x0)=0是函数y=f(x)在点x=x0处有极值的充分不必要条件;
④若F1(0,-3)、F2(0,3),动点P满足条件|PF1|+|PF2|=a+$\frac{9}{a}$,( a∈R+,a为常数),则点P的轨迹是椭圆.其中正确的命题序号为①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=|x-3|,g(x)=|x-k|(其中k≥2).
(Ⅰ)若k=4,求f(x)+g(x)<9的解集;
(Ⅱ)若?x∈[1,2],不等式f(x)-g(x)≥k-x恒成立,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知z=$\frac{{{{(1+i)}^2}}}{2+3i}$(i是虚数单位),则z的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知e为自然对数的底数,则曲线y=ex+1外过(1,1)点切线的斜率为e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知log23=t,则log4854=$\frac{1+3t}{4+t}$(用t表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有如图所示的五种塑料薄板(厚度不计):
①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;
(2)求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.

查看答案和解析>>

同步练习册答案