精英家教网 > 高中数学 > 题目详情
在长方体中ABCD-A1B1C1D1,AB=BC=2,点E是棱DD1的中点,过A1、C1、B三点的平面截去长方体的一个角,又过A1、C1、E三点的平面再截去长方体的另一个角得到如图所示的几何体ABCD-A1C1E
(1)若直线BC1与平面A1C1CA所成角的正弦值为
10
10
,求棱AA1的长.
(2)在(1)的前提下,求二面角E-A1C1-B的余弦值.
考点:与二面角有关的立体几何综合题,直线与平面所成的角
专题:综合题,空间位置关系与距离,空间角
分析:(1)设AC∩BD=O,证明∠BC1O就是直线BC1与平面A1C1CA所成角,利用直线BC1与平面A1C1CA所成角的正弦值为
10
10
,即可求棱AA1的长.
(2)取A1C1的中点F,连接EF,BF,证明∠BFE就是求二面角E-A1C1-B的平面角,在△BFE中,求二面角E-A1C1-B的余弦值即可.
解答: 解:(1)设AC∩BD=O,则BD⊥AC,
∵BD⊥CC1
∴∠BC1O就是直线BC1与平面A1C1CA所成角.
设AA1=h,则sin∠BC1O=
OB
BC1
=
2
h2+4
=
10
10

∴AA1=h=4;
(2)取A1C1的中点F,连接EF,BF,
∵A1B=BC,
∴BF⊥A1C1
同理EF⊥A1C1
∴∠BFE就是求二面角E-A1C1-B的平面角.
在△BFE中,EF=
6
,BF=3
2
,BE=2
3

则BF2=BE2+EF2=18,
∴BE⊥EF,
∴cos∠BFE=
EF
BF
=
3
3
点评:本题考查线面角,考查面面角,考查学生的计算能力,正确作出线面角、面面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆具有如下性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上的任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,则kPM与kPN之积是与点P位置无关的定值.试写出双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)具有的类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥面ABCD,E、F分别为BD、PD的中点,EA=EB=AB=1,PA=2.
(Ⅰ)证明:PB∥面AEF;
(Ⅱ)求面PBD与面AEF所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE,F为PC上一点,且CF=2FP.
(Ⅰ) 求证:PA∥平面BEF;
(Ⅱ)若PE=
3
AE
,求二面角F-BE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
p
=(cosα-5,-sinα),
q
=(sinα-5,cosα),
p
q
,且α∈(0,π).
(1)求tan2α的值;
(2)求2sin2(
α
2
+
π
6
)-sin(α+
π
6
)

查看答案和解析>>

科目:高中数学 来源: 题型:

用数字0、1、2、3组成3位数.
(1)不允许数字重复.
    ①可以组成多少三位数?
    ②把①中的三位数按从小到大排序,230是第几个数?
(2)允许数字重复,可以组成多少个能被3整除的三位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=ax+a-x(x∈[-1,1]),g(x)=ax2-2ax+4-a(x∈[-1,1]).
(1)求f(x)的单调区间和值域;
(2)若对于任意x1∈[-1,1],总存在x0∈[-1,1],使得g(x0)=f(x1)成立,求a的取值范围;
(3)若对于任意x0∈[-1,1],任意x1∈[-1,1],都有g(x0)≥f(x1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=2,AD=4,DC=3,PA=5,E∈PC,AC∩BD=F.
(1)若
CE
EP
=
3
2
,求证:EF∥平面PAB;
(2)若FE⊥PC,求二面角E-DB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥平面ABCD,∠BAD=
π
3
,AD=2.
(1)求证:平面FCB∥平面AED;
(2)若二面角A-EF-C为直二面角,求直线BC与平面AEF所成的角θ的正弦值.

查看答案和解析>>

同步练习册答案