精英家教网 > 高中数学 > 题目详情
已知椭圆具有如下性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上的任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,则kPM与kPN之积是与点P位置无关的定值.试写出双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)具有的类似的性质,并加以证明.
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设点M的坐标为(m,n),则点N的坐标为(-m,-n),且
m2
a2
-
n2
b2
=1
,又设点P的坐标为(x,y),表示出直线PM和PN的斜率,求得两直线斜率乘积的表达式,把y和x的表达式代入发现结果与p无关.
解答: 解:双曲线的类似的性质为:若M,N是双曲线
x2
a2
-
y2
b2
=1上关于原点对称的两个点,点P是双曲线上的任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,kPM与kPN之积是与点P位置无关的定值.
下面给出证明:
设点M的坐标为(m,n),则点N的坐标为(-m,-n),且
m2
a2
-
n2
b2
=1

又设点P的坐标为(x,y),由kPM=
y-n
x-m
,kPN=
y+n
x+m
得kPM•kPN=
y-n
x-m
y+n
x+m
=
y2-n2
x2-m2
,①
将y2=
b2
a2
x2-b2,n2=
b2
a2
m2-b2代入①式,得kPM•kPN=
b2
a2
(定值).
点评:本题主要考查了双曲线的性质,考查了学生综合分析问题和解决问题的能力,正确计算是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n⊥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m∥α,n∥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
4
-y2=1
的焦点到渐近线的距离为(  )
A、2
B、
2
C、1
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ln(x+1)与y=
1
x
的图象交点的横坐标所在区间为(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,错误的个数是(  )
①一条直线与一个点就能确定一个平面   
②若直线a∥b,b?平面α,则a∥α
③若函数y=f(x)定义域内存在x=x0满足f'(x0)=0,则x=x0必定是y=f(x)的极值点
④函数的极大值就是最大值.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱DD1上的动点,F,G分别是BD,BB1的中点.
(1)求证:EF⊥CF.
(2)当点E是棱DD1上的中点时,求异面直线EF与CG所成角的余弦值.
(3)当二面角E-CF-D达到最大时,求其余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E-AM-D的余弦值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=t,a2=t2,其中t>0且t≠1,x=
t
是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(Ⅰ)证明:数列{an+1-an}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=anlogtan,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体中ABCD-A1B1C1D1,AB=BC=2,点E是棱DD1的中点,过A1、C1、B三点的平面截去长方体的一个角,又过A1、C1、E三点的平面再截去长方体的另一个角得到如图所示的几何体ABCD-A1C1E
(1)若直线BC1与平面A1C1CA所成角的正弦值为
10
10
,求棱AA1的长.
(2)在(1)的前提下,求二面角E-A1C1-B的余弦值.

查看答案和解析>>

同步练习册答案