精英家教网 > 高中数学 > 题目详情
9.已知扇形的圆心角为α,所在圆的半径为r.
(1)若α=120°,r=6,求扇形的弧长.
(2)若扇形的周长为24,当α为多少弧度时,该扇形面积S最大?并求出最大面积.

分析 (1)由已知利用弧长公式即可计算得解.
(2)根据扇形的弧长与半径的关系,建立等式,然后根据面积公式转化成关于r的二次函数,通过解二次函数最值即可得到结论.

解答 解:(1)∵$a={120^0}=120×\frac{π}{180}=\frac{2π}{3}$,r=6,
∴$l=α•r=\frac{2π}{3}×6=4π$.
(2)设扇形的弧长为l,则l+2r=24,即l=24-2r(0<r<12),
扇形的面积$S=\frac{1}{2}l•r=\frac{1}{2}(24-2r)•r=-{r^2}+12r=-{(r-6)^2}+36$,
所以当且仅当r=6时,S有最大值36,此时l=24-2×6=12,
∴$α=\frac{l}{r}=\frac{12}{6}=2$.

点评 本题考查扇形的面积公式和弧长公式的应用,考查了二次函数的图象和性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.有下列说法:
①30°与-30°角的终边方向相反;
②-330°与-390°角的终边相同;
③α=(2k+1)•180°(k∈Z)与β=(4k±1)•180°(k∈Z)角的终边相同;
④设M={x|x=45°+k•90°,k∈Z},N={y|y=90°+k•45°,k∈Z},则M?N.
其中所有正确说法的序号是(  )
A.①③B.②③C.③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)计算:($\frac{1+i}{1-i}$)2+|3+4i|-i2017(其中i为虚数单位);
(2)已知x>6,解方程2C${\;}_{x-3}^{x-6}$=5A${\;}_{x-4}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)可导,f′(1)=1则$\lim_{△x→0}\frac{f(1+△x)-f(1)}{3△x}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.毎袋食品内有3张画中的一种,购买5袋这种食品,能把三张画收集齐全的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.请按要求完成下列两题
(Ⅰ)已知a、b、c都为正实数,x、y分别为a与b、b与c的等差中项,且$\frac{a}{x}+\frac{c}{y}=2$,求证:a、b、c成等比数列.
(Ⅱ)数列{an}中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列.
(1)计算S1,S2,S3的值;
(2)根据以上计算结果猜测Sn的表达式,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}满足an+1=$\frac{1}{2}$an+1,a1=1,若bn=an-2.
(1)求证:数列{bn}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.极坐标方程(ρ-1)(θ-π)=0(p>0)表示的图形是(  )
A.两个圆B.两条直线
C.一个圆和一条射线D.一条直线和一条射线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cos($\frac{π}{3}$+x)cos($\frac{π}{3}$-x)-sinxcosx+$\frac{1}{4}$
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案