1£®ÒÑÖª{an}£¬{bn}£¬{cn}¶¼ÊǸ÷ÏΪÁãµÄÊýÁУ¬ÇÒÂú×ãa1b1+a2b2+¡­+anbn=cnSn£¬n¡ÊN*£¬ÆäÖÐSnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬{cn}Êǹ«²îΪd£¨d¡Ù0£©µÄµÈ²îÊýÁУ®
£¨1£©ÈôÊýÁÐ{an}Êdz£ÊýÁУ¬d=2£¬c2=3£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Èôan=¦Ën£¨¦ËÊDz»ÎªÁãµÄ³£Êý£©£¬ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȲîÊýÁУ»
£¨3£©Èôa1=c1=d=k£¨kΪ³£Êý£¬k¡ÊN*£©£¬bn=cn+k£¨n¡Ý2£¬n¡ÊN*£©£¬ÇóÖ¤£º¶ÔÈÎÒâµÄn¡Ý2£¬n¡ÊN*£¬ÊýÁÐ$\{\frac{b_n}{a_n}\}$µ¥µ÷µÝ¼õ£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒ⣬ÓÉSncn=a1b1+a2b2+¡­+anbn£¬µÃn£¨2n-1£©=b1+b2+¡­+bn£¬µÝÍÆµÃµ±n¡Ý2ʱ£¬£¨n-1£©£¨2n-3£©=b1+b2+¡­+bn-1£¬Á½Ê½Ïà¼õ¼´¿É£»      
£¨2£©ÓÉa1b1+a2b2+¡­+anbn=cnSn£¬µÝÍÆµÃµ±n¡Ý2ʱ£¬Sn-1cn-1=a1b1+a2b2+¡­+an-1bn-1£¬Á½Ê½Ïà¼õ¡¢¼ÆËã¿ÉµÃ$\frac{£¨n-1£©}{2}d+{c_n}={b_n}$£¬´Ó¶ø¿ÉµÃµ±n¡Ý3ʱ£¬$\frac{£¨n-2£©}{2}d+{c_{n-1}}={b_{n-1}}$£¬ÔÙ´ÎÁ½Ê½Ïà¼õµÃ${b_n}-{b_{n-1}}=\frac{3}{2}d$£¨n¡Ý3£©¼´¿É½áÂÛ£»                                
£¨3£©ÓÉ£¨2£©µÃµ±n¡Ý2ʱ£¬ÓÐSn-1d=an£¨bn-cn£©£¬»¯¼òµÃSn=£¨k+1£©an£¬´Ó¶øµ±n¡Ý3ʱ£¬Sn-1=£¨k+1£©an-1£¬Á½Ê½Ïà¼õµÃ${a_n}=\frac{k+1}{k}{a_{n-1}}$£¬¹Êµ±n¡Ý2ʱ£¬${a_n}={a_2}{£¨\frac{k+1}{k}£©^{n-2}}$£¬bn=k£¨n+k£©£¬ÓÉa2=1£¬Öª${a_n}={£¨\frac{k+1}{k}£©^{n-2}}$£¬Áîdn=$\frac{b_n}{a_n}$£¬Ôò$\frac{{d}_{n+1}}{{d}_{n}}$=$\frac{£¨n+k+1£©k}{£¨n+k£©£¨k+1£©}$£¼1£¬´Ó¶ø¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßd=2£¬c2=3£¬¡àcn=2n-1£¬
¡ßÊýÁÐ{an}ÊǸ÷ÏΪÁãµÄ³£ÊýÁУ¬
¡àa1=a2=¡­=an£¬Sn=na1£¬
ÔòÓÉSncn=a1b1+a2b2+¡­+anbn¼°cn=2n-1£¬µÃn£¨2n-1£©=b1+b2+¡­+bn£¬
µ±n¡Ý2ʱ£¬£¨n-1£©£¨2n-3£©=b1+b2+¡­+bn-1£¬Á½Ê½Ïà¼õµÃbn=4n-3£¬
µ±n=1ʱ£¬b1=1£¬Ò²Âú×ãbn=4n-3£¬
¹Ê${b_n}=4n-3£¨n¡Ê{N^*}£©$£®      
£¨2£©ÒòΪa1b1+a2b2+¡­+anbn=cnSn£¬
µ±n¡Ý2ʱ£¬Sn-1cn-1=a1b1+a2b2+¡­+an-1bn-1£¬
Á½Ê½Ïà¼õµÃSncn-Sn-1cn-1=anbn£¬
¼´£¨Sn-1+an£©cn-Sn-1cn-1=anbn£¬Sn-1£¨cn-cn-1£©+ancn=anbn£¬
¼´Sn-1d+¦Ëncn=¦Ënbn£¬
ÓÖ${S_{n-1}}=\frac{¦Ë+¦Ë£¨n-1£©}{2}£¨n-1£©=\frac{¦Ën£¨n-1£©}{2}$£¬
ËùÒÔ$\frac{¦Ën£¨n-1£©}{2}d+¦Ën{c_n}=¦Ën{b_n}$£¬
¼´$\frac{£¨n-1£©}{2}d+{c_n}={b_n}$£¬
ËùÒÔµ±n¡Ý3ʱ£¬$\frac{£¨n-2£©}{2}d+{c_{n-1}}={b_{n-1}}$£¬
Á½Ê½Ïà¼õµÃ${b_n}-{b_{n-1}}=\frac{3}{2}d$£¨n¡Ý3£©£¬
ËùÒÔÊýÁÐ{bn}´ÓµÚ¶þÏîÆðÊǹ«²îΪ$\frac{3}{2}d$µÈ²îÊýÁУ»
ÓÖµ±n=1ʱ£¬ÓÉS1c1=a1b1µÃc1=b1£¬
µ±n=2ʱ£¬ÓÉ${b_2}=\frac{£¨2-1£©}{2}d+{c_2}=\frac{1}{2}d+£¨{c_1}+d£©={b_1}+\frac{3}{2}d$µÃ${b_2}-{b_1}=\frac{3}{2}d$£¬
¹ÊÊýÁÐ{bn}Êǹ«²îΪ$\frac{3}{2}d$µÄµÈ²îÊýÁУ®                                
£¨3£©ÓÉ£¨2£©µÃµ±n¡Ý2ʱ£¬Sn-1£¨cn-cn-1£©+ancn=anbn£¬¼´Sn-1d=an£¨bn-cn£©£¬
ÒòΪbn=cn+k£¬ËùÒÔbn=cn+kd£¬¼´bn-cn=kd£¬
ËùÒÔSn-1d=an•kd£¬¼´Sn-1=kan£¬
ËùÒÔSn=Sn-1+an=£¨k+1£©an£¬
µ±n¡Ý3ʱ£¬Sn-1=£¨k+1£©an-1£¬Á½Ê½Ïà¼õµÃ an=£¨k+1£©an-£¨k+1£©an-1£¬
¼´${a_n}=\frac{k+1}{k}{a_{n-1}}$£¬¹Ê´ÓµÚ¶þÏîÆðÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
ËùÒÔµ±n¡Ý2ʱ£¬${a_n}={a_2}{£¨\frac{k+1}{k}£©^{n-2}}$£¬
${b_n}={c_{n+k}}={c_n}+kd={c_1}+£¨n-1£©k+{k^2}=k+£¨n-1£©k+{k^2}=k£¨n+k£©$£¬
ÁíÍâÓÉÒÑÖªÌõ¼þµÃ£¨a1+a2£©c2=a1b1+a2b2£¬ÓÖc2=2k£¬b1=k£¬b2=k£¨2+k£©£¬
ËùÒÔa2=1£¬Òò¶ø${a_n}={£¨\frac{k+1}{k}£©^{n-2}}$£¬
Áîdn=$\frac{b_n}{a_n}$£¬Ôò$\frac{{{d_{n+1}}}}{d_n}=\frac{{{b_{n+1}}{a_n}}}{{{a_{n+1}}{b_n}}}$=$\frac{£¨n+k+1£©k}{£¨n+k£©£¨k+1£©}$£¬
ÒòΪ£¨n+k+1£©k-£¨n+k£©£¨k+1£©=-n£¼0£¬
ËùÒÔ$\frac{{{d_{n+1}}}}{d_n}£¼1$£¬ËùÒÔ¶ÔÈÎÒâµÄn¡Ý2£¬n¡ÊN*£¬ÊýÁÐ$\{\frac{b_n}{a_n}\}$µ¥µ÷µÝ¼õ£®

µãÆÀ ±¾Ì⿼²éÇóÊýÁеÄͨÏʽ¡¢µ¥µ÷ÐÔ¡¢µÝÍÆÊ½¡¢¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚ¡÷ABCÖУ¬ÏÂÁи÷ʽһ¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®a=$\frac{bsinA}{cosB}$B£®b=$\frac{asinA}{sinB}$C£®c=acosB+bcosAD£®b=$\frac{csinC}{sinB}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªkΪʵÊý£¬¶ÔÓÚʵÊýaºÍb£¬¶¨ÒåÔËË㡱*¡°£ºa*b=$\left\{\begin{array}{l}{{a}^{2}-kab£¬a¡Üb}\\{{b}^{2}-kab£¬a£¾b}\end{array}\right.$£¬Éèf£¨x£©=£¨2x-1£©*£¨x-1£©£®
£¨1£©Èôf£¨x£©ÔÚ[-$\frac{1}{2}$£¬0]ÉÏΪÔöº¯Êý£¬ÇóʵÊýkµÄȡֵ·¶Î§£»
£¨2£©Èô·½³Ìf£¨x£©=0ÓÐÈý¸ö²»Í¬µÄ½â£¬¼Ç´ËÈý¸ö½âµÄ»ýΪT£¬ÇóTµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª2sin2x-cos2x+sinxcosx-6sinx+3cosx=0£¬Çó$\frac{2co{s}^{2}x+2sinxcosx}{1+tanx}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬´ÓÀⳤΪ6cmµÄÕý·½ÌåÌúƤÏäABCD-A1B1C1D1ÖзÖÀë³öÀ´ÓÉÈý¸öÕý·½ÐÎÃæ°å×é³ÉµÄ¼¸ºÎͼÐΣ®
£¨1£©¼ÇCC1µÄÖеãΪE£¬ÇóÒìÃæÖ±ÏßEB1ÓëA1C1Ëù³É½ÇµÄ´óС£»
£¨2£©Èç¹ûÓÃͼʾÖÐÕâÑùÒ»¸ö×°ÖÃÀ´Ê¢Ë®£¬ÄÇô×î¶àÄÜÊ¢¶àÉÙcm3Ìå»ýµÄË®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2½¥½üÏß·Ö±ðΪl1£¬l2£¬Î»ÓÚµÚÒ»ÏóÏ޵ĵãPÔÚl1ÉÏ£¬Èôl2¡ÍPF1£¬l2¡ÎPF2£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®$\sqrt{3}$C£®2D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªOΪ¡÷ABCµÄÍâÐÄ£¬AB=2a£¬AC=$\frac{2}{a}$£¬¡ÏBAC=120¡ã£¬Èô$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$£¬Ôò3x+6yµÄ×îСֵΪ$6+2\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èçͼ£¬ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬|F1F2|=8£¬PÊÇË«ÇúÏßÓÒÖ§ÉϵÄÒ»µã£¬Ö±ÏßF2PÓëyÖá½»ÓÚµãA£¬¡÷APF1µÄÄÚÇÐÔ²ÔÚ±ßPF1ÉϵÄÇеãΪQ£¬Èô|PQ|=2£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=|x+a|+|x-2|
¢Ùµ±a=-3ʱ£¬Çó²»µÈʽf£¨x£©¡Ý3µÄ½â¼¯£»
¢Úf£¨x£©¡Ü|x-4|ÈôµÄ½â¼¯°üº¬[1£¬2]£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸