11£®ÏÂÁи÷ʽ£º
£¨1£©${[{£¨-\sqrt{2}£©^{-2}}]^{-\frac{1}{2}}}=-\sqrt{2}$£»
£¨2£©ÒÑÖª${log_a}\frac{2}{3}£¼1$£¬Ôò$a£¾\frac{2}{3}$£»
£¨3£©º¯Êýy=2xµÄͼÏóÓ뺯Êýy=-2-xµÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ£»
£¨4£©º¯Êýf£¨x£©=$\sqrt{m{x^2}+mx+1}$µÄ¶¨ÒåÓòÊÇR£¬ÔòmµÄȡֵ·¶Î§ÊÇ0£¼m¡Ü4£»
£¨5£©ÒÑÖªº¯Êýf£¨x£©=x2+£¨2-m£©x+m2+12Ϊżº¯Êý£¬ÔòmµÄÖµÊÇ2£®
ÆäÖÐÕýÈ·µÄÓУ¨3£©£¨5£©£®£¨°ÑÄãÈÏΪÕýÈ·µÄÐòºÅÈ«²¿Ð´ÉÏ£©

·ÖÎö ¸ù¾ÝÖ¸ÊýµÄÔËËãÐÔÖÊ£¬»¯¼òʽ×Ó£¬¿ÉÅжϣ¨1£©£»¸ù¾Ý¶ÔÊýº¯ÊýµÄÐÔÖÊ£¬Çó³öaµÄ·¶Î§£¬¿ÉÅжϣ¨2£©£»¸ù¾Ýº¯ÊýͼÏóµÄ¶Ô³Æ±ä»»£¬¿ÉÅжϣ¨3£©£»Çó³öÂú×ãÌõ¼þµÄmµÄ·¶Î§£¬¿ÉÅжϣ¨4£©£»¸ù¾Ýżº¯ÊýµÄ¶¨Ò壬¿ÉÅжϣ¨5£©£®

½â´ð ½â£º£¨1£©${[{£¨-\sqrt{2}£©}^{-2}]}^{-\frac{1}{2}}={[{£¨\sqrt{2}£©}^{-2}]}^{-\frac{1}{2}}=\sqrt{2}$£¬¹Ê´íÎó£»
£¨2£©ÒÑÖª${log_a}\frac{2}{3}£¼1$£¬Ôò$a£¼\frac{2}{3}$£¬»òa£¾1£¬¹Ê´íÎó£»
£¨3£©º¯Êýy=2xµÄͼÏóÓ뺯Êýy=-2-xµÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ£¬¹ÊÕýÈ·£»
£¨4£©º¯Êýf£¨x£©=$\sqrt{m{x^2}+mx+1}$µÄ¶¨ÒåÓòÊÇR£¬ÔòmµÄȡֵ·¶Î§ÊÇ0¡Üm¡Ü4£¬¹Ê´íÎó£»
£¨5£©ÒÑÖªº¯Êýf£¨x£©=x2+£¨2-m£©x+m2+12Ϊżº¯Êý£¬Ôòf£¨-x£©=f£¨x£©£¬
¼´x2-£¨2-m£©x+m2+12=x2+£¨2-m£©x+m2+12£¬½âµÃ£ºm=2£¬¹ÊÕýÈ·£®
¹ÊÕýÈ·µÄÃüÌâÓУº£¨3£©£¨5£©£¬
¹Ê´ð°¸Îª£º£¨3£©£¨5£©

µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÎªÔØÌ壬¿¼²éÁËÖ¸ÊýµÄÔËËãÐÔÖÊ£¬¶ÔÊýº¯ÊýµÄÐÔÖÊ£¬Í¼ÏóµÄ¶Ô³Æ±ä»»£¬º¯ÊýµÄ¶¨ÒåÓò£¬º¯ÊýµÄÆæÅ¼ÐÔµÈ֪ʶµã£¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÃݺ¯Êý$g£¨x£©={x^{-\frac{1}{2}{m^2}+m+\frac{3}{2}}}$£¨m¡ÊZ£©µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÇÒg£¨2£©£¼g£¨3£©
£¨1£©ÇómµÄÖµºÍº¯Êýg£¨x£©µÄ½âÎöʽ£»
£¨2£©º¯Êýf£¨x£©=ag£¨x£©+a2x+3£¨a¡ÊR£©ÔÚÇø¼ä[-2£¬-1]ÉÏÊǵ¥µ÷µÝÔöº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª$\left\{{\overrightarrow i£¬\overrightarrow j£¬\overrightarrow k}\right\}$ÊǿռäµÄÒ»¸öµ¥Î»Õý½»»ùµ×£¬ÇÒ$\overrightarrow{OA}=2\overrightarrow i+\overrightarrow k£¬\overrightarrow{OB}=2\overrightarrow j$£¬Ôò¡÷OAB£¨OÎª×ø±êÔ­µã£©µÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{5}{2}$B£®$\frac{{\sqrt{5}}}{2}$C£®5D£®$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¼¯ºÏA={x||x-2|¡Ü3£¬x¡ÊR}£¬B={y|y=-x2£¬-1¡Üx¡Ü2}Ôò∁R£¨A¡ÉB£©=£¨-¡Þ£¬-1£©¡È£¨0£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈôÖ±Ïßy=kx+1ÓëÍÖÔ²$\frac{x^2}{2010}+\frac{y^2}{m}=1$ºãÓй«¹²µã£¬ÔòmµÄȡֵ·¶Î§ÊÇ£ºm¡Ý1£¬ÇÒm¡Ù2010£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚ¶àÃæÌåABCDEÖУ¬Õý·½ÐÎADEFÓëÌÝÐÎABCDËùÔÚÆ½Ã滥Ïà´¹Ö±£¬AB¡ÎCD£¬AD¡ÍCD£¬AB=AD=1£¬CD=2£¬M¡¢N·Ö±ðΪEC¡¢BDµÄÖе㣮
£¨1£©ÇóÖ¤£ºBC¡ÍÆ½ÃæBDE£»
£¨2£©ÇóÖ±ÏßMNÓëÆ½ÃæBMCËù³ÉµÄ½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãSn-1=an-an-1£¨n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Áîbn=£¨n+1£©an£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÖ±ÏßlÓëÅ×ÎïÏßy2=xÏཻÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬Èôy1y2=-1£¬
£¨1£©ÇóÖ¤£ºÖ±Ïßl¹ý¶¨µãM£¬²¢ÇóµãMµÄ×ø¼Ê£»
£¨2£©ÇóÖ¤£ºOA¡ÍOB£»
£¨3£©Çó¡÷AOBµÄÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èý½ÇÐÎABCÖУ¬cosBcosC=1-sinBsinC£¬Èý½ÇÐÎABCµÄÐÎ״ΪµÈÑüÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸