分析 (Ⅰ)通过对an=$\frac{{a}_{n-1}}{{a}_{n-1}+1}(n>1)$两边同时取倒数,整理即得结论;
(Ⅱ)通过(I)可知b3=b1+$\frac{1}{2}$b2=2,当n≥2时利用bn-1=b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{n-2}$bn-2与bn=b1+a1b2+a2b3+…+an-2bn-1作差,进而利用累乘法计算即得结论.
解答 (Ⅰ)证明:∵an=$\frac{{a}_{n-1}}{{a}_{n-1}+1}(n>1)$,
∴$\frac{1}{{a}_{n}}$=$\frac{{a}_{n-1}+1}{{a}_{n-1}}$=1+$\frac{1}{{a}_{n-1}}$(n>1),
又∵$\frac{1}{{a}_{1}}$=$\frac{1}{\frac{1}{2}}$=2,
∴数列{$\frac{1}{{a}_{n}}$}是首项为2、公差为1的等差数列,
∴$\frac{1}{{a}_{n}}$=2+n-1=n+1,
∴an=$\frac{1}{n+1}$;
(Ⅱ)结论:2016为数列{bn}中的第3024项.
理由如下:
由(I)可知bn=b1+a1b2+a2b3+…+an-2bn-1
=b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{n-1}$bn-1(n>2),
又∵b1=1,b2=2,
∴b3=b1+$\frac{1}{2}$b2=2,
∵当n≥2时,bn-1=b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{n-2}$bn-2,
∴bn-bn-1=$\frac{1}{n-1}$bn-1,即$\frac{{b}_{n}}{{b}_{n-1}}$=$\frac{n}{n-1}$,
由累乘法可知bn=$\frac{{b}_{n}}{{b}_{n-1}}$•$\frac{{b}_{n-1}}{{b}_{n-2}}$•…•$\frac{{b}_{4}}{{b}_{3}}$•b3
=$\frac{n}{n-1}$•$\frac{n-1}{n-2}$•…•$\frac{4}{3}$•2
=$\frac{2}{3}$n,
当bn=$\frac{2}{3}$n=2016时,解得:n=3024,
∴2016为数列{bn}中的第3024项.
点评 本题考查数列的通项及前n项和,考查累乘法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$-1 | B. | $\sqrt{5}$+1 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{{2^{101}}-1}}{{{2^{100}}+1}}$ | B. | $\frac{{{2^{100}}-1}}{{{2^{100}}+1}}$ | C. | $\frac{{{2^{101}}-1}}{{2({{2^{101}}+1})}}$ | D. | $\frac{{{2^{100}}-1}}{{2({{2^{100}}+1})}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com