精英家教网 > 高中数学 > 题目详情
在△ABC中,已知a2-a=2(b+c),a+2b=2c-3.
(1)若sinC:sinA=4:
13
,求a、b、c;
(2)在(1)的条件下,求△ABC的最大角的弧度数.
考点:正弦定理,余弦定理
专题:解三角形
分析:(1)利用正弦定理化简sinC:sinA=4:
13
,为边的关系,结合已知条件,即可求a、b、c;
(2)判断三角形的三条边的大小,利用余弦定理求△ABC的最大角的弧度数.
解答: 解:(1)由正弦定理可知:sinC:sinA=4:
13
,化为:
c
a
=
4
13

又a2-a=2(b+c),a+2b=2c-3,
解得a=
13
,c=4,b=
5-
13
2

(2)∵a=
13
,c=4,b=
5-
13
2
;显然c是最大边,
∴cosC=
a2+b2-c2
2ab
=
(
13
)
2
+(
5-
13
2
)
2
-42
2
13
×
5-
13
2
=-
1
2

△ABC的最大角的弧度数
3
点评:本题考查余弦定理以及正弦定理的应用,三角形的解法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为内角A,B,C所对的边长,若a2+b2-c2=absin2C
(1)求角C;
(2)若c-a=2,
AB
AC
=36,求sinA+sinB-sinC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)从集合{-1,0,1,2}中随机选取一个数为m,从集合{0,1}中随机选取一个数为n,求m-2n=0的概率;
(Ⅱ)从集合{x|-1≤x≤2}中随机选取一个数为a,从集合{y|0≤y≤1}中随机选取一个数为b,求a-2b>0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+2sin(x+π)sin(x+
2
)+3cos2x
(Ⅰ)求函数的单调减区间:
(Ⅱ)若方程f(x)=a+2,x∈[-
π
4
π
4
]有两解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校高中学生的校本课程选课过程中,规定每位学生必选一个科目,并且只选一个科目.已知某班一组与二组各有6位同学,选课情况如下表:
科目
组别
15
24
总计39
现从一组、二组中各任选2人.
(Ⅰ)求选出的4人均选科目乙的概率;
(Ⅱ)设X为选出的4个人中选科目甲的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-(a2-a)lnx-x(a≤
1
2
).
(1)若函数f(x)在2处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性;
(3)设g(x)=a2lnx2-x,若f(x)>g(x)对?x>1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(4-2a)x+a2+1.
(1)若函数f(x)在区间[1,+∞)上单调递增,求实数a的取值范围;
(2)是否存在实数a∈[-8,0],使得函数f(x)在区间[-4,0]上的最小值为7?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)过点P(1,
2
2
),离心率e=
2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)过点M(0,2)的直线l与椭圆E相交于A,B两点.
①当直线OA,OB的斜率之和为
4
3
时(其中O为坐标原点),求直线l的斜率k;
②求
MA
MB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设D在△ABC的BC边上,BD=
1
3
BC,若
AD
1
AB
2
AC
(λ1,λ2为实数),则λ12的值为
 

查看答案和解析>>

同步练习册答案