【题目】如图,在四棱锥
中,
平面
,
,
,且
,
.
![]()
(1)证明:
.
(2)若
,试在棱
上确定一点
,使
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】已知数列
满足奇数项
成等差,公差为
,偶数项
成等比,公比为
,且数列
的前
项和为
,
,
.
若
,
.
①求数列
的通项公式;
②若
,求正整数
的值;
若
,
,对任意给定的
,是否存在实数
,使得
对任意
恒成立?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医院对治疗支气管肺炎的两种方案
,
进行比较研究,将志愿者分为两组,分别采用方案
和方案
进行治疗,统计结果如下:
有效 | 无效 | 合计 | |
使用方案 | 96 | 120 | |
使用方案 | 72 | ||
合计 | 32 |
(1)完成上述列联表,并比较两种治疗方案有效的频率;
(2)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?
附:
,其中
.
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线
上一点
作直线交抛物线E于另一点N.
(1)若直线MN的斜率为1,求线段
的长.
(2)不过点M的动直线l交抛物线E于A,B两点,且以AB为直径的圆经过点M,问动直线l是否恒过定点.如果有求定点坐标,如果没有请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,极点为
,一条封闭的曲线
由四段曲线组成:
,
,
,
.
(1)求该封闭曲线所围成的图形面积;
(2)若直线
:
与曲线
恰有3个公共点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆
的离心率为
,点
在椭圆C上.
(1)求椭圆C的标准方程;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,
轴,垂足为E,连结QE并延长交C于点G.
①求证:
是直角三角形;
②求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
和曲线
的直角坐标方程;
(2)若点
坐标为
,直线
与曲线
交于
两点,且
,求实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com