7£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{2}}{2}$£¬Ô­µãµ½Ö±Ïß$\frac{x}{a}$+$\frac{y}{b}$=1µÄ¾àÀëΪ$\frac{2\sqrt{3}}{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôµãA£¬BÊÇÍÖÔ²CÉϹØÓÚÖ±Ïßy=kx+1¶Ô³ÆµÄÁ½µã£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©¸ù¾ÝÀëÐÄÂʹ«Ê½ºÍµãµ½Ö±ÏߵľàÀ빫ʽ£¬½áºÏb2=a2-c2£¬¼´¿ÉÇóµÃÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬y1¡Ùy2£¬BAµÄÖе㣨x0£¬y0£©£¬Ö±Ïßy=kx+1ÇÒk¡Ù0£¬ºã¹ý£¨0£¬1£©£¬µãB£¬AÔÚÍÖÔ²ÉÏ£¬»¯¼ò¿ÉµÃy0=$\frac{{y}_{1}+{y}_{2}}{2}$=-1£¬ABµÄÖеãÔÚy=kx+1ÉÏ£¬½âµÃx0£¬ÀûÓÃ$\left\{\begin{array}{l}{{x}^{2}+2{y}^{2}=4}\\{y=-1}\end{array}\right.$£¬¿ÉµÃx=¡À$\sqrt{2}$£¬ÍƳökµÄ²»µÈʽ£¬µÃµ½½á¹û£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖªe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¼´c2=$\frac{1}{2}$a2£¬b2=a2-c2=$\frac{1}{2}$a2£¬
Ô­µãµ½Ö±Ïß$\frac{x}{a}$+$\frac{y}{b}$=1µÄ¾àÀëΪ$\frac{2\sqrt{3}}{3}$£¬
¼´ÓÐ$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{2\sqrt{3}}{3}$£¬
¡àa=2£¬b=$\sqrt{2}$£¬¡àa2=4£¬¡àb2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»
£¨2£©ÍÖÔ²CÉÏ´æÔÚµãB£¬A¹ØÓÚÖ±Ïßy=kx+1¶Ô³Æ£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬y1¡Ùy2
ABµÄÖе㣨x0£¬y0£©£¬Ö±Ïßy=kx+1ÇÒk¡Ù0£¬ºã¹ý£¨0£¬1£©£¬
Ôòx12+£¨y1-1£©2=x22+£¨y2-1£©2£¬
µãB£¬AÔÚÍÖÔ²ÉÏ£¬
¡àx12=4-2y12£¬x22=4-2y22£¬¡à4-2y12+£¨y1-1£©2=4-2y22+£¨y2-1£©2£¬
»¯¼ò¿ÉµÃ£ºy12-y22=-2£¨y1-y2£©£¬¼´y1+y2=-2£¬
¡ày0=$\frac{{y}_{1}+{y}_{2}}{2}$=-1£¬
ÓÖÒòΪABµÄÖеãÔÚy=kx+1ÉÏ£¬ËùÒÔy0=kx0+1£¬x0=-$\frac{2}{k}$£¬
ÓÉ$\left\{\begin{array}{l}{{x}^{2}+2{y}^{2}=4}\\{y=-1}\end{array}\right.$£¬¿ÉµÃx=¡À$\sqrt{2}$£¬
¡à0£¼-$\frac{2}{k}$£¼$\sqrt{2}$£¬»ò-$\sqrt{2}$£¼-$\frac{2}{k}$£¼0£¬
¼´k£¼-$\sqrt{2}$»òk£¾$\sqrt{2}$£®
ÔòkµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-$\sqrt{2}$£©¡È£¨$\sqrt{2}$£¬+¡Þ£©

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬵㵽ֱÏߵľàÀ빫ʽ£¬¶Ô³ÆÖªÊ¶µÄÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÔ²C£º£¨x-3£©2+£¨y-4£©2=1£¬µãA£¨-1£¬0£©£¬B£¨1£¬0£©£¬µãPÊÇÔ²Éϵ͝µã£¬Ôòd=|PA|2+|PB|2µÄ×î´óֵΪ74£¬×îСֵΪ34£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª¹«²î²»Îª0µÄµÈ²îÊýÁÐ{an}µÄÊ×ÏîΪ1£¬Ç°nÏîºÍΪSn£¬ÇÒÊýÁÐ{$\frac{{S}_{n}}{{a}_{n}}$}ÊǵȲîÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèlgbn=$\frac{{a}_{n}}{{3}^{n}}$£¨n¡ÊN*£©£¬ÎÊ£ºb1£¬bk£¬bm£¨k£¬m¾ùΪÕýÕûÊý£¬ÇÒ1£¼k£¼m£©ÄÜ·ñ³ÉµÈ±ÈÊýÁУ¿ÈôÄÜ£¬Çó³öËùÓеÄkºÍmµÄÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÃüÌâp£º·½³Ì4x2+4£¨m-2£©x+1=0ÎÞʵ¸ù£»ÃüÌâq£º·½³Ì$\frac{x^2}{2m}-\frac{y^2}{m-1}=1$ͼÏóÊǽ¹µãÔÚxÖáÉϵÄË«ÇúÏߣ®ÓÖp¡ÅqÎªÕæ£¬?pÎªÕæ£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¼¯ºÏA={x|x¡Ü-2»òx¡Ý2}£¬B={x|1£¼x£¼5}£¬C={x|m-1¡Üx¡Ü3m}£®
£¨¢ñ£©ÇóA¡ÉB£¬£¨∁RA£©¡ÈB£»
£¨¢ò£©ÈôB¡ÉC=C£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªm£¾0£¬n£¾0£¬ÇÒmn=81£¬Ôòm+nµÄ×îСֵÊÇ18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èô·½³Ì$\frac{{x}^{2}}{3-m}$+$\frac{{y}^{2}}{m-1}$=1±íʾ½¹µãÔÚyÖáÉϵÄÍÖÔ²£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1£©B£®£¨1£¬2£©C£®£¨2£¬3£©D£®£¨3£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÈôÈ«¼¯U=R£¬A={x|x£¾2}£¬B={x|x£¾5}£¬ÔòA¡É∁UB={x|2£¼x¡Ü5}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Çó${¡Ò}_{\;}^{\;}$x$\sqrt{1-{x}^{2}}$dx£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸