精英家教网 > 高中数学 > 题目详情
已知函数f(x)=πsin
1
4
x
,如果存在实数x1,x2,使x∈R时,f(x1)≤f(x)≤f(x2)恒成立,则|x1-x2|的最小值为
 
考点:函数恒成立问题
专题:计算题,三角函数的图像与性质
分析:依题意知,f(x1)和f(x2)分别是函数f(x)=πsin
1
4
x的最大值和最小值,于是知|x1-x2|的最小值为函数的半个周期,从而可得答案.
解答: 解:∵对任意x∈R都有f(x1)≤f(x)≤f(x2),
∴f(x1)和f(x2)分别是函数f(x)=πsin
1
4
x的最大值和最小值,
∴|x1-x2|的最小值为函数的半个周期,
∵T=
1
4
=8π,
∴|x1-x2|的最小值为4π,
故答案为4π.
点评:本题考查函数恒成立问题,理解“|x1-x2|的最小值为函数的半个周期”是关键,考查转化思想与运算求解能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l:y=x+b与抛物线C:x2=4y相切于点A.
(Ⅰ) 求实数b的值,及点A的坐标;
(Ⅱ) 求过点B(0,-1)的抛物线C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:
(Ⅰ)求参加数学抽测的人数n、抽测成绩的中位数及分数分别在[80,90),[90,100]内的人数;
(Ⅱ)若从分数在[80,100]内的学生中任选两人进行调研谈话,求恰好有一人分数在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的图象与y=ln
x
-1的图象关于y=x对称,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
2m
+
y2
m-4
=1
的一条渐近线与直线2x-
2
y-3
=0垂直,则双曲线的离心率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n∈N*,则
lim
n→∞
3n+1-2n+1
3n+2n
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=x2(-3≤x≤3)绕y轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,该正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=8x上两点M、N到焦点F的距离分别是d1,d2,若d1+d2=5,则线段MN的中点P到y轴的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

F1,F2是双曲线x2-
y2
m
=1
的两个焦点,过点F2作与x轴垂直的直线和双曲线的交点为A,满足|
AF2
|=|
F1F2
|
,则m的值为
 

查看答案和解析>>

同步练习册答案