精英家教网 > 高中数学 > 题目详情
10.已知tanα=7,求值.
(1)$\frac{sinα+cosα}{2sinα-cosα}$=$\frac{8}{13}$;
(2)sin2α+sinαcosα+3cos2α=$\frac{59}{50}$.

分析 (1)利用同角三角函数基本关系式,化简为正切函数的形式,代入求解即可.
(2)利用平方关系式,化为正切函数的形式,代入求解即可.

解答 解:(1)∵tanα=7,
∴$\frac{sinα+cosα}{2sinα-cosα}$=$\frac{tanα+1}{2tanα-1}$=$\frac{7+1}{14-1}$=$\frac{8}{13}$.
(2)sin2α+sinαcosα+3cos2α=$\frac{si{n}^{2}α+sinαcosα+3co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α+tanα+3}{ta{n}^{2}α+1}$=$\frac{49+7+3}{49+1}$=$\frac{59}{50}$.
故答案为:$\frac{8}{13}$;$\frac{59}{50}$.

点评 本题考查同角三角函数基本关系式的应用,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.经过1小时,时针旋转的角是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过抛物线y2=4x的焦点作直线与其交于M、N两点,作平行四边形MONP,则点P的轨迹方程为y2=4(x-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,cosx<$\frac{1}{2}$”的否定是(  )
A.?x<R,cosx≥$\frac{1}{2}$B.?x∈R,cosx>$\frac{1}{2}$C.?x<R,cosx≥$\frac{1}{2}$D.?x∈R,cosx>$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,函数f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,当x∈[0,$\frac{π}{2}$]时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)求f(x)的单调区间;
(3)指出所求函数图象是由f(x)=sinx的图象如何变换得到的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知PA⊥平面ABCD,PA=AB=AD=$\frac{1}{2}$CD=1,∠BAD=∠ADC=90°.
(1)求直线PD与平面PAB所成角的大小;
(2)求点B到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图的程序后,输出的值是(  )
A.17B.19C.21D.23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过点P(2,1)且在x,y轴上的截距相等的直线方程为(  )
A.x-2y=0B.2x-y=0或x+y-3=0C.x+y-3=0D.x-2y=0或x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W,则下列命题中:
①曲线W关于原点对称;            
②曲线W关于x轴对称;
③曲线W关于y轴对称;            
④曲线W关于直线y=x对称
所有真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案