精英家教网 > 高中数学 > 题目详情
设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(  )
A、
1
2
p
B、1-p
C、1-2p
D、
1
2
-p
考点:正态分布曲线的特点及曲线所表示的意义
专题:计算题,概率与统计
分析:根据随机变量ξ服从标准正态分布N(0,1),得到正态曲线关于ξ=0对称,利用P(ξ>1)=p,即可求出P(-1<ξ<0).
解答: 解:∵随机变量ξ服从正态分布N(0,1),
∴正态曲线关于ξ=0对称,
∵P(ξ>1)=p,
∴P(ξ<-1)=p,
∴P(-1<ξ<0)=
1
2
-p.
故选:D.
点评:本题考查正态分布曲线的特点及曲线所表示的意义,本题解题的关键是利用正态曲线的对称性,是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )
A、?φ∈R,函数y=sin(2x+φ)都不是偶函数
B、?x∈R,使得e2x+3ex+1=0
C、?x0∈R,使得x02≤x0成立
D、“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是函数f(x)=Asin(ωx+φ)(x∈R)在区间[
π
6
6
]上的图象,为了得到这个函数的图象,只需把函数g(x)=sinx(x∈R)的图象上所有的点(  )
A、向右平移
π
6
个单位,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
B、向右平移
π
3
个单位,再把所得各点的横坐标缩短到原来的
1
2
倍,纵坐标不变
C、向左平移
π
6
个单位,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
D、向左平移
π
3
个单位,再把所得各点的横坐标缩短到原来的
1
2
倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)满足:对任意实数a,b都有|f(a)-f(b)|≤|a-b|,且f(f(f(0)))=0.则f(0)=(  )
A、1B、-1C、0D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinxsin(
π
2
-x)的最小正周期为(  )
A、π
B、
3
C、
π
2
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(x,y)是曲线C:
x2
4
+
y2
3
=1上的动点,则z=x-2y的最大值为(  )
A、4
B、
5
C、2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

x∈[0,2π],使得sinx≥
1
3
成立的x的取值范围是(  )
A、[0,arccos
2
2
3
]
B、[arccos
2
2
3
,arccos(-
2
2
3
)]
C、[π-arccos
2
2
3
,π]
D、[arccos
2
2
3
π
2
+arccos
2
2
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B,C实施时必须相邻,请问实验顺序的编排方法共有(  )
A、24种B、96种
C、120种D、144种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
1
a
(1-x)(a>0),f(x)在区间[0,1]上最小值为g(a),求函数h(x)=
(1-x)g(x),x>0
x
1-x
,x≤0
图象的对称轴方程.

查看答案和解析>>

同步练习册答案