【题目】已知平面直角坐标系
中,曲线
的方程为
,以原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.若将曲线
上的所有点的横坐标缩小到原来的一半,纵坐标伸长到原来的
倍,得曲线
.
(1)写出直线
和曲线
的直角坐标方程;
(2)设点
, 直线
与曲线
的两个交点分别为
,
,求
的值.
科目:高中数学 来源: 题型:
【题目】十项全能是由跑、跳、投等10个田径项目组成的综合性男子比赛项目,按照国际田径联合会制定的田径运动全能评分表计分,然后将各个单项的得分相加,总分多者为优胜.下面是某次全能比赛中甲、乙两名运动员的各个单项得分的雷达图.
![]()
下列说法错误的是( )
A.在100米项目中,甲的得分比乙高
B.在跳高和标枪项目中,甲、乙的得分基本相同
C.甲的各项得分比乙更均衡
D.甲的总分高于乙的总分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形
中,
,
,
为边
的中点,将
沿直线
翻折成
,设
为线段
的中点.则在
翻折过程中,给出如下结论:
![]()
①当
不在平面
内时,
平面
;
②存在某个位置,使得
;
③线段
的长是定值;
④当三棱锥
体积最大时,其外接球的表面积为
.
其中,所有正确结论的序号是______.(请将所有正确结论的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省即将实行新高考,不再实行文理分科.某校为了研究数学成绩优秀是否对选择物理有影响,对该校2018级的1000名学生进行调查,收集到相关数据如下:
(1)根据以上提供的信息,完成
列联表,并完善等高条形图;
选物理 | 不选物理 | 总计 | |
数学成绩优秀 | |||
数学成绩不优秀 | 260 | ||
总计 | 600 | 1000 |
![]()
(2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?
附:![]()
临界值表:
| 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为坐标原点,动点
在圆
上,过
作
轴的垂线,垂足为
,点
满足
.
(1)求点
的轨迹
的方程;
(2)直线
上的点
满足
.过点
作直线
垂直于线段
交
于点
.
(ⅰ)证明:
恒过定点;
(ⅱ)设线段
交
于点
,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为助力湖北新冠疫情后的经济复苏,某电商平台为某工厂的产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:
单价 | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量 | 90 | 84 | 83 | 80 | 75 | 68 |
(1)根据以上数据,求
关于
的线性回归方程;
(2)若该产品成本是4元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润?
(参考公式:回归方程
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
底面
,底面
为平行四边形,
,且
,
,
是棱
的中点.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值;
(3)在线段
上(不含端点)是否存在一点
,使得二面角
的余弦值为
?若存在,确定
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的极坐标方程和曲线
的参数方程;
(2)若
,直线
与曲线
交于
两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com