精英家教网 > 高中数学 > 题目详情
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,求证:∠PDE=∠POC.
考点:弦切角
专题:直线与圆
分析:因AE=AC,AB为直径,可得∠OAC=∠OAE,由∠POC=∠OAC+∠OCA=∠EAC.及由EACD四点共圆可得∠EAC=∠PDE,从而可证得∠PDE=∠POC.
解答: 证明:∵AE=AC,AB为直径,
EB
=
BC

由于同一个圆中,等弧所对的圆周角相等
∴∠OAC=∠OAE.
∵OA=OC
∴∠OAC=∠OCA
∴∠POC=∠OAC+∠OCA=∠OAC+∠OAC=∠EAC.
又∵EACD四点共圆,
∴∠EAC=∠PDE,
∴∠PDE=∠POC.
点评:本题主要考查了圆周角定理及圆内接四边形的性质定理的应用,证明此类问题要求考试熟练掌握基本定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|•|△y|≠0,则称点B为点A的“相关点”,记作:B=τ(A),已知P0(x0,y0),(x0,y0∈Z)为平面上一个定点,平面上点列{Pi}满足:Pi=τ(Pi-1),且点Pi的坐标为(xi,yi),其中i=1,2,3,…,n,则点P0的“相关点”有(  )个.
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=8,|
b
|=6,且|
a
+
b
|=|
a
-
b
|,求|
a
-
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

进入2013年后全国各地雾霾天气频发,一个重要的诱因是空气中细小颗粒物.我国新引入PM2.5来衡量大气的质量.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.长沙市环保局从该市市区2013年1月份的PM2.5监测数据中随机抽取7天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(Ⅰ)这7天的平均值是否超标?
(Ⅱ)若从这7天的数据中随机抽出2天,求恰有一天空气质量超标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下所给的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②垂直于同一直线的两条直线相互平行;
③向量
a
=(1,2)按
b
=(1,1)平移得
c
=(2,3);
④双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点.
⑤曲线x3-y3+9x2y+9xy2=0关于原点对称.
其中真命题的序号为
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是根据某赛季甲、乙两名篮球运动员每场比赛得分情况画出的茎叶图.从这个茎叶图可以看出甲、乙两名运动员得分的中位数分别是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站3 人,同一级台阶上的人不区分站的位置,则不同的站法种数是
 
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下三个关于x的不等式:①x2-4x+3<0,②
3
x+1
>1
,③2x2+m2x+m<0.若③的解集非空,且满足③的x至少满足①和②中的一个,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x2+
1
x
(x≤-
1
2
)的值域.

查看答案和解析>>

同步练习册答案