精英家教网 > 高中数学 > 题目详情
2.△ABC中已知AB=2,AC=1,且cos2A+2sin2$\frac{B+C}{2}=1$.
(1)求角A的大小和BC的值;
(2)设M为△ABC外接圆的圆心,求$\overrightarrow{MC}•\overrightarrow{AB}$的值.

分析 (1)由所给的等式利用二倍角的余弦公式求得cosA的值,可得A的值;再利用余弦定理求得BC的值.
(2)由(1)可得∠C=$\frac{π}{2}$,MC=1,AMC为等边三角形,$\overrightarrow{MC}$、$\overrightarrow{AB}$成的角为$\frac{2π}{3}$,再利用两个向量的数量积的定义求得 $\overrightarrow{MC}$•$\overrightarrow{AB}$ 的值.

解答 解:(1)△ABC中已知AB=2,AC=1,且cos2A+2sin2$\frac{B+C}{2}=1$,
∴cos2A=1-2sin2($\frac{B+C}{2}$)=cos(B+C)=-cosA,
∴2cos2A+cosA-1=0,求得cosA=-1或 cosA=$\frac{1}{2}$,
∴A=π (舍去)或A=$\frac{π}{3}$.
再利用余弦定理可得BC=$\sqrt{{AB}^{2}{+AC}^{2}-2AB•AC•cos∠A}$
=$\sqrt{4+1-2×2×1×\frac{1}{2}}$=$\sqrt{3}$.
(2)由以上可得AC2+BC2=1+2=AB2,∴∠C=$\frac{π}{2}$.
根据M为△ABC外接圆的圆心,可得M为AB的中点,MC=1,AMC为等边三角形,
∴$\overrightarrow{MC}$、$\overrightarrow{AB}$成的角为$\frac{2π}{3}$,∴$\overrightarrow{MC}$•$\overrightarrow{AB}$=|$\overrightarrow{MC}$|•|$\overrightarrow{AB}$|cos$\frac{2π}{3}$=1×2×(-$\frac{1}{2}$)=-1.

点评 本题主要考查二倍角的余弦公式,余弦定理,两个向量的数量积的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若tan(α+45°)<0,则下列结论正确的是(  )
A.sinα<0B.cosα<0C.sin2α<0D.cos2α<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足an+1=$\frac{1}{{a}_{n}}$+1,n∈N*,a1=1,则a4=(  )
A.$\frac{3}{2}$B.3C.$\frac{5}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c,d都是实数,且a2+b2=m2,c2+d2=n2(m>0,n>0),求证|ac+bd|≤$\frac{{m}^{2}+{n}^{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.A,B是半径为2的圆O上的两点,M是弦AB上的动点,若△AOB为直角三角形,则$\overrightarrow{OM}$•$\overrightarrow{AM}$的最小值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\frac{\sqrt{6}|m|\sqrt{3k^2+2-m^2}}{2+3k^2}$=$\frac{\sqrt{6}}{2}$,求证:3k2+2=2m2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在曲线y=$\frac{4}{{x}^{2}}$上求一点P,使得曲线在该点处的切线的倾斜角为135°,则P点坐标为(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\frac{2+\frac{1}{ta{n}^{2}θ}}{1+sinθ}$=1,求证:(1+sin θ )(2+cosθ )=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给定下列三个命题:
p1:函数y=ax-a-x(a>0,且a≠1)在R上为增函数;
p2:?a,b∈R,a2-ab+b2<0;
p3:cosα=cosβ成立的一个充分不必要条件是α=2kπ+β(k∈Z)
则下列命题中真命题为(  )
A.p1∨p2B.p2∧p3C.¬p2∧p3D.p1∨¬p3

查看答案和解析>>

同步练习册答案