精英家教网 > 高中数学 > 题目详情
4.若幂函数f(x)=xm+1在(0,+∞)单调递增,则实数m的取值范围是(  )
A.(0,+∞)B.(-∞,0)C.(-1,+∞)D.(-∞,-1)

分析 利用幂函数的单调性即可得出.

解答 解:∵幂函数f(x)=xm+1在(0,+∞)上是增函数,
∴m+1>0,解得m>-1,
实数m的取值范围是:(-1,+∞).
故选:C.

点评 本题考查了幂函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,若l1⊥l2,则m=$\frac{1}{2}$;若l1∥l2,则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.化简$\frac{{\sqrt{1-2sin{{10}^0}cos{{10}^0}}}}{{cos{{10}^0}-\sqrt{1-{{sin}^2}{{100}^0}}}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个直径为40厘米的圆柱形水桶,现在水面中放入一个铁球,球全部没入水中后,水面升高90厘米,则此球的半径为30厘米.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三棱锥P-ABC中,PA,PB,PC两两垂直,PA=PB=2,其外接球的表面积为24π,则外接球球心到平面ABC的距离为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出以下命题:(1)若${∫}_{a}^{b}f(x)dx>0$,则f(x)>0;(2)${∫}_{0}^{2x}|sinx|dx=4$;(3)f(x)的原函数为F(x)且F(x)为T为周期的函数,则${∫}_{0}^{T}f(x)dx$=${∫}_{T}^{2T}f(x)dx$;其中正确命题的个数为(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.角-558°的终边在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A(1,1),B(4,2),若直线l:mx-y-1=0与线段AB相交,则实数m的取值范围为[$\frac{3}{4}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直线ax+y+1=0过圆x2+y2+2x-ay-2=0的圆心,则实数a的值为(  )
A.-2B.2C.6D.-6

查看答案和解析>>

同步练习册答案