精英家教网 > 高中数学 > 题目详情
20.有2位男生和3位女生共5位同学站成一排,分别求满足下列条件的排法种数
(1)三位女生互不相邻
(2)男生甲不站排头,且女生乙不站排尾
(3)男生甲不站两端,3位女生中有且只有两位女生相邻.

分析 (1)三位女生互不相邻,利用插空法;
(2)男生甲不站排头,且女生乙不站排尾,利用间接法;
(3)从3名女生中任取2人看做一个元素,剩下一名女生记作B,两名男生分别记作甲、乙,则男生甲必须在A、B之间,最后再在排好的三个元素中选出四个位置插入乙.

解答 解:(1)三位女生互不相邻,利用插空法,有A22A33=12种;
(2)男生甲不站排头,且女生乙不站排尾,利用间接法,有A55-2A44+A33=78种;
(3)从3名女生中任取2人“捆”在一起记作A,
A共有C32A22=6种不同排法,
剩下一名女生记作B,两名男生分别记作甲、乙;
则男生甲必须在A、B之间,
此时共有6×2=12种排法(A左B右和A右B左)
最后再在排好的三个元素中选出四个位置插入乙,
∴共有12×4=48种不同排法.

点评 本题考查了排列中相邻问题和不相邻问题,相邻用捆绑,不相邻用插空,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=|x-a|-$\frac{3}{x}$+a-2有且仅有三个零点,且它们成等差数列,则实数a的取值集合为{$\frac{5+3\sqrt{33}}{8}$,-$\frac{9}{5}$ }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2ex-ax-2(x∈R,a∈R).
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=sinx+tan$\frac{1}{2}$x+1且f(-a)=11,则f(2π+a)=(  )
A.11B.9C.0D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:x-2y-2$\sqrt{5}$=0与x,y轴分别交于点M,N,P是圆C:x2+y2=2上任意一点.
(Ⅰ)求△PMN面积的最小值;
(Ⅱ)求点P到直线l的距离小于1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{{x}^{2},x>0}\end{array}\right.$,若f(2)=(  )
A.-2B.2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=(1-ax)ln(1+x)-x,其中a是实数;
(1)当0≤x≤1时,关于x的不等式f'(x)≥0恒成立,求实数a的取值范围;
(2)求证:e>($\frac{1001}{1000}$)1000.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点(1,f(1))的切线方程为y=3x+1
(1)若y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)在(1)的条件下,求函数y=f(x)在[-3,1]上的最大值;
(3)若函数y=f(x)在区间(-∞,1)上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.集合A={x|x2-x=0},B={x|x5-4x2+5x-2=0},则A∩B={1}.

查看答案和解析>>

同步练习册答案