精英家教网 > 高中数学 > 题目详情
5.已知空间四边形ABCD的四条边和对角线都相等,求平面ACD和平面BCD所成二面角的大小.

分析 根据二面角的定义先作出二面角的平面角,结合余弦定理即可得到结论.

解答 解:取CD的中点O,连接AO,BO,
∵四边形ABCD的四条边和对角线都相等,
∴AO⊥CD,BO⊥CD,
即CD⊥平面ABO,
即∠AOB是平面ACD和平面BCD所成二面角的平面角,
设四边形的边长为2,
则OC=1,即B0=A0=$\sqrt{3}$,
由余弦定理得cos∠AOB=$\frac{A{O}^{2}+B{O}^{2}-A{B}^{2}}{2AO•BO}$=$\frac{3+3-4}{2×\sqrt{3}•\sqrt{3}}=\frac{2}{6}$=$\frac{1}{3}$,
即∠AOB=arccos$\frac{1}{3}$,
即二面角的大小为arccos$\frac{1}{3}$.

点评 本题主要考查二面角的求解,根据二面角的定义先作出二面角的平面角是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知直线l过点(-3$\sqrt{2}$,0),且与圆x2+y2=25相交于A,B两点,S△ABO=12,求直线l的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=1-x+lnx.
(1)求函数在点x=2处的切线方程;
(2)对任意x∈(0,+∞),f(x)≤0恒成立;
(3)证明:当n∈N+时,不等式($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中圆心O距离地面40.5米,半径40米,如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题.
(1)求出你与地面的距离y与时间t的函数关系式.
(2)当你第四次距离地面只有60.5米时用了多少时间?
(3)当你登上摩天轮两分钟后,你的朋友也在摩天轮最低处登上摩天轮,问你的朋友登上摩天轮多少时间后,你和你的朋友与地面的距离之差最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,
(1)求函数f(x)的解析式,
(2)求出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),直线l1:$\frac{x}{a}$-$\frac{y}{b}$=1被椭圆C截得的弦长为2$\sqrt{2}$,且e=$\frac{\sqrt{6}}{3}$,过椭圆C的右焦点且斜率为$\sqrt{3}$的直线l2被椭圆C截得弦长AB,
(1)求椭圆的方程;
(2)弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在一次突击检查中,某质检部门对某超市A、B、C、D,共4个品牌的食用油进行了检测,其中A品牌抽检到2个不合格的批次,另外三个品牌均各抽检到1个批次.
(1)若从这这4个品牌共5个批次的食用油中任选3个批次进行某项检测,求抽取的3个批次的食用油至少有一个是A品牌的概率.
(2)若对这4个品牌共5个批次的食用油进行综合检测,其检测结果如下(综合评估满分为10分):
品牌A1A2BCD
得分888.89.69.8
若检测的这5个批次食用油得分的平均值为a,从这5个批次中随机抽取2个,记这2个批次食用油中得分超过a的个数为ξ.求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角梯形ABCO中,OA∥BC,OA⊥OC,在OA,BC边上分别有两点P,Q,若PQ平分该梯形的面积,求证:直线PQ必过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若cos(2α+$\frac{π}{6}$)=$\frac{4}{5}$,则sin(α+$\frac{π}{12}$)=$±\frac{\sqrt{10}}{10}$.

查看答案和解析>>

同步练习册答案