15£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+cos¦Â\\ y=sin¦Â\end{array}$£¨¦ÂΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£®
£¨¢ñ£©½«ÇúÏßC1µÄ·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨¢ò£©ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=tcos¦Á\\ y=tsin¦Á\end{array}$£¨$\frac{¦Ð}{2}$£¼¦Á£¼¦Ð£¬tΪ²ÎÊý£¬t¡Ù0£©£¬lÓëC1½»ÓëµãA£¬lÓëC2½»ÓëµãB£¬ÇÒ|AB|=$\sqrt{3}$£¬Çó¦ÁµÄÖµ£®

·ÖÎö £¨1£©½«ÇúÏßC1µÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£¬È»ºóת»¯Çó½âC1µÄ¼«×ø±ê·½³Ì£®
£¨2£©ÇúÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=tcos¦Á\\ y=tsin¦Á\end{array}$£¨$\frac{¦Ð}{2}$£¼¦Á£¼¦Ð£¬tΪ²ÎÊý£¬t¡Ù0£©£¬»¯Îªy=xtan¦Á£®ÓÉÌâÒâ¿ÉµÃ£º|OA|=¦Ñ1=2cos¦Á£¬|OB|=¦Ñ2=4cos¦Á£¬ÀûÓÃ|AB|=$\sqrt{3}$£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+cos¦Â\\ y=sin¦Â\end{array}$£¨¦ÂΪ²ÎÊý£©£®
¿ÉµÃ£¨x-1£©2+y2=1£¬x=¦Ñcos¦È£¬y=¦Ñsin¦È£¬
¡àC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-2¦Ñcos¦È=0£¬
¼´¦Ñ=2cos¦È£®
£¨2£©ÇúÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=tcos¦Á\\ y=tsin¦Á\end{array}$£¨$\frac{¦Ð}{2}$£¼¦Á£¼¦Ð£¬tΪ²ÎÊý£¬t¡Ù0£©£¬»¯Îªy=xtan¦Á£®
ÓÉÌâÒâ¿ÉµÃ£º|OA|=¦Ñ1=2cos¦Á£¬|OB|=¦Ñ2=4cos¦Á£¬
¡ß|AB|=$\sqrt{3}$£¬
¡à|OA|-|OB|=-2cos¦Á=$\sqrt{3}$£¬¼´cos¦Á=-$\frac{\sqrt{3}}{2}$£®
ÓÖ$\frac{¦Ð}{2}$£¼¦Á£¼¦Ð£¬
¡à¦Á=$\frac{5¦Ð}{6}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±½Ç×ø±êÓë¼«×ø±êµÄ»¥»¯¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Á½µãÖ®¼äµÄ¾àÀë¡¢Ô²µÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÉèFΪÅ×ÎïÏßx2=4yµÄ½¹µã£¬A¡¢B¡¢CΪ¸ÃÅ×ÎïÏßÉÏÈýµã£¬Èô$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$£¬Ôò|FA|+|FB|+|FC|µÄֵΪ£¨¡¡¡¡£©
A£®3B£®6C£®9D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ax+lnx£®
£¨¢ñ£©Èôf£¨x£©ÔÚÇø¼ä£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ò£©É躯Êýh£¨x£©=-$\frac{1}{2}$x2-f£¨x£©ÓÐÁ½¸ö¼«Öµµãx1¡¢x2£¬ÇÒx1¡Ê[$\frac{1}{2}$£¬1£©£¬ÇóÖ¤£º|h£¨x1£©-h£¨x2£©|£¼2-ln2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÃüÌâ¡°?x¡ÊR£¬x2£¾0¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®?x¡ÊR£¬x2¡Ü0B£®$?{x_0}¡ÊR£¬{x_0}^2£¾0$C£®$?{x_0}¡ÊR£¬{x_0}^2£¼0$D£®$?{x_0}¡ÊR£¬{x_0}^2¡Ü0$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªA£¨6£¬3£©£¬B£¨2£¬3£©£¬C£¨4£¬1£©ºÍD£¨5£¬m£©ËĵãÔÚͬһԲÖÜÉÏ£¬Çó
£¨1£©Ô²µÄ·½³Ì£»
£¨2£©mµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏß${C_1}£º{£¨{x-1}£©^2}+{y^2}=1$£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=\sqrt{2}cos¦È\\ y=sin¦È\end{array}\right.$£¬£¨¦ÈΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵ£®
£¨1£©ÇóC1£¬C2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉäÏß$y=\frac{{\sqrt{3}}}{3}x£¨{x¡Ý0}£©$ÓëC1µÄÒìÓÚÔ­µãµÄ½»µãΪA£¬ÓëC2µÄ½»µãΪB£¬Çó|AB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0£¼¦Õ£¼¦Ð£©µÄͼÏóÈçͼËùʾ£¬½«f£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬µÃµ½g£¨x£©µÄͼÏó£¬Ôòº¯Êýg£¨x£©µÄ½âÎöʽΪ£¨¡¡¡¡£©
A£®g£¨x£©=sin2xB£®g£¨x£©=cos2xC£®$g£¨x£©=sin£¨2x+\frac{¦Ð}{6}£©$D£®$g£¨x£©=sin£¨2x+\frac{2¦Ð}{3}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª$\overrightarrow{a}$=£¨sinx£¬cosx£©£¬$\overrightarrow{b}$=£¨$\sqrt{3}$£¬-1£©£®
£¨¢ñ£©Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Çósin2x-6cos2xµÄÖµ£»
£¨¢ò£©Èôf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¬Çóº¯Êýf£¨2x£©µÄµ¥µ÷¼õÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª·½³Ìx3+ax2+bx+c=0£¨a£¬b£¬c¡ÊR£©£®
£¨1£©Éèa=b=4£¬·½³ÌÓÐÈý¸ö²»Í¬Êµ¸ù£¬ÇócµÄȡֵ·¶Î§£»
£¨2£©ÇóÖ¤£ºa2-3b£¾0ÊÇ·½³ÌÓÐÈý¸ö²»Í¬Êµ¸ùµÄ±ØÒª²»³ä·ÖÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸