精英家教网 > 高中数学 > 题目详情
2.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的15-64岁劳动人口所占比例:
年份20302035204020452050
年份代号t12345
所占比例y6865626261
根据上表,y关于t的线性回归方程为y=-1.7t+68.7
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{y})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-t)^{2}}$,$\overline{a}$=$\overline{y}$-$\overline{b}$$\overline{t}$.

分析 根据回归系数公式计算回归系数,得出回归方程.

解答 解:$\overline{t}$=$\frac{1+2+3+4+5}{5}=3$,$\overline{y}$=$\frac{68+65+62+62+61}{5}$=63.6.
$\sum_{i=1}^{5}({t}_{i}-\overline{t})({y}_{i}-\overline{y})$=(-2)×4.4+(-1)×1.4+0+1×(-1.6)+2×(-2.6)=-17.
$\sum_{i=1}^{5}({t}_{i}-\overline{t})^{2}$=4+1+0+1+2=10.
∴$\stackrel{∧}{b}$=-$\frac{17}{10}$=-1.7.$\stackrel{∧}{a}$=63.6+1.7×3=68.7.
∴y关于t的线性回归方程为y=-1.7t+68.7.
故答案为y=-1.7t+68.7.

点评 本题考查了线性回归方程的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+4}$.
(1)求证:{$\frac{1}{{a}_{n}}$+$\frac{1}{3}$}为等比数列;
(2)求证:Sn<$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=sin($\frac{π}{3}$-2x),x∈[0,π]的单调递减区间为[0,$\frac{5π}{12}$],[$\frac{11π}{12}$,π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设$z=|{\sqrt{3}-i}|+i$(i为虚数单位),则$\overline z$=2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z1=-i,$\overline{z_2}=2+i$,则z1z2=(  )
A.-1-2iB.-1+2iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,且an=3-Sn,数列{bn}为等差数列,且b5=15,b7=21.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)将数列{$\frac{1}{{a}_{n}}$}中的第b1项,第b2项,第b3项,…,第bn项,…,删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2016项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在△BCD所在平面α内有一点E,BE=7cm,A为平面α外一点,AB⊥BC,AB⊥BD,且AB=5cm.
计算:
(1)直线AE和平面α所成的角的大小;
(2)线段AE的长.(精确到0.1cm)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将高三(1)班参加体检的36名学生,编号为:1,2,3,…,36,若采用系统抽样的方法抽取一个容量为4的样本,已知样本中含有编号为6号、24号、33号的学生,则样本中剩余一名学生的编号是15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足a1=1,且对任意n≥2,n∈N*都有an=2an-1+1,则a5=31.

查看答案和解析>>

同步练习册答案