8£®Èçͼ¢Ù£¬ÔÚ¡÷ABCÖУ¬ÒÑÖªAB=15£¬BC=14£¬CA=13£®½«¡÷ABCÑØBC±ßÉϵĸßADÕÛ³ÉÒ»¸öÈçͼ¢ÚËùʾµÄËÄÃæÌåA-BCD£¬Ê¹µÃͼ¢ÚÖеÄBC=11£®
£¨1£©Çó¶þÃæ½ÇB-AD-CµÄÆ½Ãæ½ÇµÄÓàÏÒÖµ£»
£¨2£©ÔÚËÄÃæÌåA-BCDµÄÀâADÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ$\overrightarrow{PB}$•$\overrightarrow{PC}$=0£¿Èô´æÔÚ£¬ÇëÖ¸³öµãPµÄλÖã»Èô²»´æÔÚ£¬Çë¸ø³öÖ¤Ã÷£®

·ÖÎö £¨1£©¸ù¾ÝͼÏóÕÛ֮ǰºÍÕÛÖ®ºóµÄ±ß³¤¹ØÏµ£¬½áºÏ¶þÃæ½ÇµÄ¶¨Òå½øÐÐÇó½â£®
£¨2£©¼ÙÉèÔÚËÄÃæÌåA-BCDµÄÀâADÉÏ´æÔÚµãP£¬Ê¹µÃ$\overrightarrow{PB}•\overrightarrow{PC}=0$¸ù¾ÝÏòÁ¿ÊýÁ¿»ýµÄ¶¨Òå½áºÏÏòÁ¿µÄÔËËã·¨Ôò½øÐл¯¼òÇó½â£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖªAD¡ÍBD£¬AD¡ÍCD£¬
¹Ê¶þÃæ½ÇB-AD-CµÄÆ½Ãæ½ÇΪ¡ÏBDC£¬
ÔÚͼ¢Ù£¬ÉèBD=x£¬AD=h£¬ÔòCD=14-x£¬
ÔÚ¡÷ABDÓë¡÷ACDÖУ¬·Ö±ðÓù´¹É¶¨ÀíµÃx2+h2=152£¬£¨14-x£©2+h2=132£¬
µÃx=9£¬h=12£¬´Ó¶øAD=12£¬BD=9£¬CD=5£¬
ÔÚͼ¢ÚµÄ¡÷BCDÖУ¬ÓÉÓàÏÒ¶¨ÀíµÃBC2=BD2+CD2-2BD•CDcos¡ÏBDC£¬
¼´112=92+52-2¡Á9¡Á5cos¡ÏBDC£¬Ôòcos¡ÏBDC=-$\frac{1}{6}$£¬
¼´¶þÃæ½ÇB-AD-CµÄÆ½Ãæ½ÇµÄÓàÏÒÖµÊÇ-$\frac{1}{6}$£®
£¨2£©¼ÙÉèÔÚËÄÃæÌåA-BCDµÄÀâADÉÏ´æÔÚµãP£¬Ê¹µÃ$\overrightarrow{PB}•\overrightarrow{PC}=0$£¬
Ôò0=$\overrightarrow{PB}•\overrightarrow{PC}$=£¨$\overrightarrow{PD}$+$\overrightarrow{DB}$£©•£¨$\overrightarrow{PD}$+$\overrightarrow{DC}$£©=$\overrightarrow{PD}$2+$\overrightarrow{DB}$•$\overrightarrow{PD}$+$\overrightarrow{PD}$•$\overrightarrow{DC}$+$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{PD}$2+0+0+9¡Á5¡Á£¨-$\frac{1}{6}$£©=$\overrightarrow{PD}$2-$\frac{15}{2}$£¬
Ôò|$\overrightarrow{PD}$|=$\frac{\sqrt{30}}{2}$£¼12£¬·ûºÅÌâÒ⣬
¼´ÔÚÀâADÉÏ´æÔÚµãP£¬Ê¹µÃ$\overrightarrow{PB}•\overrightarrow{PC}=0$£¬´Ëʱ|$\overrightarrow{PD}$|=$\frac{\sqrt{30}}{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þÃæ½ÇµÄ¼ÆËãÒÔ¼°ÏòÁ¿ÊýÁ¿»ýµÄÓ¦Ó㬿¼²éѧÉúµÄÔËËãºÍÍÆÀíÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÈçͼËùʾ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬AA1B1BΪÕý·½ÐΣ¬BB1C1CΪÁâÐΣ¬¡ÏBB1C1=60¡ã£¬Æ½ÃæAA1B1B¡ÍÆ½ÃæBB1C1C£®
£¨¢ñ£©ÇóÖ¤£ºB1C¡ÍAC1£»
£¨¢ò£©Çó¶þÃæ½ÇB-AC1-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÈýÀâ×¶A-BCDÖУ¬¡÷ABCºÍ¡÷BCDËùÔÚÆ½Ã滥Ïà´¹Ö±£¬ÇÒBC=BD=4£¬AC=4$\sqrt{2}$£¬CD=4$\sqrt{3}£¬¡ÏACB={45¡ã}$£¬E£¬F·Ö±ðΪAC£¬DCµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæABD¡ÍÆ½ÃæBCD£»
£¨¢ò£©Çó¶þÃæ½ÇE-BF-CµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÒÑÖªAB=AC£¬Ô²OÊÇ¡÷ABCµÄÍâ½ÓÔ²£¬CD¡ÍAB£¬CEÊÇÔ²OµÄÖ±¾¶£®¹ýµãB×÷Ô²OµÄÇÐÏß½»ACµÄÑÓ³¤ÏßÓÚµãF£®
£¨¢ñ£©ÇóÖ¤£ºAB•CB=CD•CE£»
£¨¢ò£©Èô$BC=\sqrt{2}$£¬$BF=2\sqrt{2}$£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ä³¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ$\frac{8-¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©£¨x¡ÊR£©£¬f¡ä£¨x£©´æÔÚ£¬¼Çg£¨x£©=f¡ä£¨x£©£¬ÇÒg¡ä£¨x£©Ò²´æÔÚ£¬g¡ä£¨x£©£¼0£®
£¨1£©ÇóÖ¤£ºf£¨x£©¡Üf£¨x0£©+f¡ä£¨x0£©£¨x-x0£©£»£¨x0¡ÊR£©
£¨2£©Éè${¦Ë_i}¡Ê{R^+}£¨i=1£¬2£¬3£¬¡­$n£©£¬ÇÒ¦Ë1+¦Ë2+¡­+¦Ën=1£¬xi¡ÊR£¨i=1£¬¡­£¬n£©£¨n¡ÊN+£©
ÇóÖ¤£º¦Ë1f£¨x1£©+¦Ë2f£¨x2£©+¡­+¦Ënf£¨xn£©¡Üf£¨¦Ë1x1+¦Ë2x2+¡­+¦Ënxn£©
£¨3£©ÒÑÖªa£¬f£¨a£©£¬f[f£¨a£©]£¬f{f[£¨f£¨a£©]}ÊÇÕýÏîµÄµÈ±ÈÊýÁУ¬ÇóÖ¤£ºf£¨a£©=a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ä³Æ·ÅÆÒûÁÏÆ¿¿ÉÒÔ½üËÆ¿´×÷ÊÇÓÉÒ»¸ö°ëÇòºÍÒ»¸öԲ̨×é³É£¬ÆäÈýÊÓͼÈçͼËùʾ£¬¸ÃÒûÁÏÆ¿µÄ±íÃæ»ýΪ£¨¡¡¡¡
A£®81¦ÐB£®125¦ÐC£®£¨41+7$\sqrt{145}$£©¦ÐD£®£¨73+7$\sqrt{145}$£©¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ò»¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Èô½«¸Ã¼¸ºÎÌåÇиî³É³¤·½Ì壬Ôò³¤·½ÌåµÄ×î´óÌå»ýÓë¸Ã¼¸ºÎÌåµÄÌå»ýÖ®±ÈΪ£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$\frac{36}{41}$C£®$\frac{18}{23}$D£®$\frac{9}{11}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔËÐÐÈçͼ³ÌÐò£¬Êä³ö½á¹ûSΪ£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸