精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(1,-2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则代数式$\frac{sinθ-cosθ}{sinθ+cosθ}$=3.

分析 由条件利用两个向量共线的性质求得tanθ的值,再利用同角三角函数的基本关系,求得要求式子的值.

解答 解:∵向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(1,-2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,∴-2cosθ-sinθ=0,
求得tanθ=-2,∴代数式$\frac{sinθ-cosθ}{sinθ+cosθ}$=$\frac{tanθ-1}{tanθ+1}$=3,
故答案为:3.

点评 本题主要考查两个向量共线的性质,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=30°,PD⊥平面ABCD,AD=2,点E为AB上一点,且$\frac{AE}{AB}$=m,点F为PD中点.
(Ⅰ)若m=$\frac{1}{2}$,证明:直线AF∥平面PEC;
(Ⅱ)是否存在一个常数m,使得平面PED⊥平面PAB,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在直三棱柱ABC-A1B1C1中,AC=4,BC=4,AA1=4,点D是AB的中点,点E是AC的中点.
(1)求证:B1D与C1E相交;
(2)若C1E⊥BC,求直线A1D与平面B1C1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某几何体的三视图如图所示,则它的表面积为$12π+4\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图及其尺寸如图所示,则该几何体的各侧面中,最大的侧面的面积为(  )
A.4B.8C.2$\sqrt{2}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,既是偶函数又在区间(1,2)内单调递减的是(  )
A.f(x)=-cosxB.f(x)=2x+2-xC.f(x)=$\frac{1}{{x}^{2}}$D.f(x)=$\sqrt{-x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.与$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1有共同的渐近线,且过点(0,-8)的双曲线方程为$\frac{{y}^{2}}{64}-\frac{{x}^{2}}{36}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若a1=3,an=an-1+$\frac{2}{{a}_{n-1}}$(n≥2),bn=$\frac{1}{{a}_{n}}$,写出bn的前3项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知Sn是首项为a的等比数列{an}的前n项的和,S3,S9,S6成等差数列.
(1)求:a2,a8,a5成等差数列;
(2)若Tn=a1+2a4+3a7+…+na3n-2,求Tn

查看答案和解析>>

同步练习册答案