分析 由条件利用两个向量共线的性质求得tanθ的值,再利用同角三角函数的基本关系,求得要求式子的值.
解答 解:∵向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(1,-2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,∴-2cosθ-sinθ=0,
求得tanθ=-2,∴代数式$\frac{sinθ-cosθ}{sinθ+cosθ}$=$\frac{tanθ-1}{tanθ+1}$=3,
故答案为:3.
点评 本题主要考查两个向量共线的性质,同角三角函数的基本关系,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=-cosx | B. | f(x)=2x+2-x | C. | f(x)=$\frac{1}{{x}^{2}}$ | D. | f(x)=$\sqrt{-x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com