精英家教网 > 高中数学 > 题目详情
6.若某空间几何体的三视图如图所示.
(1)画出几何体的直观图(简图);
(2)求该几何体的表面积和体积.

分析 (1)利用三视图的作法,直接画出几何体的直观图即可.
(2)利用几何体的图形,结合三视图的数据,求解几何体的表面积与体积即可.

解答 解:(1)几何体的直观图如图:   
(2)几何体是底面是直角三角形,直角边长为:$\sqrt{2}$,1,高为$\sqrt{2}$的三棱柱,
几何体的体积V=$\frac{1}{2}×\sqrt{2}×1×\sqrt{2}$=1    
表面积为:S=2×$\frac{1}{2}$×$\sqrt{2}$×1+$\sqrt{2}×\sqrt{2}$+1×$\sqrt{2}$+$\sqrt{{1}^{2}+2}×\sqrt{2}$=2+2$\sqrt{2}$$+\sqrt{6}$.

点评 本题考查三视图与直观图的画法,几何体的表面积与体积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在菱形ABCD中,若AC=4,则$\overrightarrow{CA}$•$\overrightarrow{AB}$等于(  )
A.8B.-8
C.|${\overrightarrow{AB}}$|cosAD.与菱形的边长有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知:直线l的方程为3x+4y-12=0,求满足下列条件的直线l′的方程.
(1)l′与l平行,且l′与l间的距离等于5;
(2)l′与l垂直且l′与两坐标轴围成的三角形面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=4$\sqrt{3}$x的准线过椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点,椭圆的长轴长是短轴长的2倍,则该椭圆的方程为$\frac{x^2}{4}+{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f ( x )=ln x和g(x)=$\frac{1}{2}{x^2}$+a(其中a为常数),直线l与f ( x ) 和g ( x )的图象都相切,且与f ( x ) 的图象的切点的横坐标为1.
(Ⅰ)求l的方程和a的值;  
(Ⅱ)记h ( x )=f ( x2+1)-g ( x )-ln 2,求函数h ( x ) 的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=-x2+4ax在(-∞,-2]上单调递增,则实数a的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点A(1,0)和B(2,1)的直线的倾斜角为(  )
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某篮球运动员在上赛季的三分球命中率为25%,场均三分球出手10次,教练建议他在新赛季减少三分球出手次数,若在新赛季的第一场比赛中该球员计划出手3次,每次出手均相互独立,设其命中X次.
(1)若将频率视为概率,求X的分布列;
(2)请给该队员一些建议,如何才能提高他在一场比赛中的三分球得分的期望?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex-2x.
(1)求函数f(x)的极值;
(2)证明:当x>0时,曲线y=x2恒在曲线y=ex的下方;
(3)讨论函数g(x)=x2-aex(a∈R)零点的个数.
参考公式:alogaN=N(a>0,a≠1,N>0)

查看答案和解析>>

同步练习册答案