精英家教网 > 高中数学 > 题目详情
2.某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为$\frac{3}{4}$和$\frac{3}{5}$,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(1)求恰好有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品B研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利ξ万元的分布列和期望.

分析 (1)设恰好有一种新产品研发成功为事件A,利用相互独立与互斥事件的概率计算公式可得P(A)=(1-$\frac{3}{4}$)×$\frac{3}{5}$+$\frac{3}{4}$×(1-$\frac{3}{5}$).
(2)由题可得设企业可获得利润为ξ,则X的取值有-90,50,80,220.由独立试验的概率计算公式可得,P(X=0)=(1-$\frac{3}{4}$)(1-$\frac{3}{5}$),P(X=50)=$(1-\frac{3}{4})$×$\frac{3}{5}$,P(X=80)=$\frac{3}{4}×(1-\frac{3}{5})$,
P(X=220)=$\frac{3}{4}×\frac{3}{5}$.

解答 解:(1)设恰好有一种新产品研发成功为事件A,则
P(A)=(1-$\frac{3}{4}$)×$\frac{3}{5}$+$\frac{3}{4}$×(1-$\frac{3}{5}$)=$\frac{9}{20}$.
(2)由题可得设企业可获得利润为ξ,则X的取值有-90,50,80,220.
由独立试验的概率计算公式可得,P(X=0)=(1-$\frac{3}{4}$)(1-$\frac{3}{5}$)=$\frac{1}{10}$,
P(X=50)=$(1-\frac{3}{4})$×$\frac{3}{5}$=$\frac{3}{20}$,
P(X=80)=$\frac{3}{4}×(1-\frac{3}{5})$=$\frac{3}{10}$,
P(X=220)=$\frac{3}{4}×\frac{3}{5}$=$\frac{9}{20}$.
∴ξ的分布列如下:

X-905080220
P$\frac{1}{10}$$\frac{3}{20}$$\frac{3}{10}$$\frac{9}{20}$
则数学期望E(X)=$-90×\frac{1}{10}$+50×$\frac{3}{20}$+$80×\frac{3}{10}$+220×$\frac{9}{20}$=121.5万元.

点评 本题考查了相互独立与互斥事件的概率计算公式、随机变量的分布列与数学期望计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.给出下列结论:
动点M(x,y)分别到两定点(-4,0),(4,0)连线的斜率之乘积为-$\frac{9}{16}$,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左右焦点,则下列命题中:
(1)曲线C的焦点坐标为F1(-5,0),F2(5,0);
(2)曲线C上存在一点M,使得S△F1MF2=9;
(3)P为曲线C上一点,P,F1,F2是直角三角形的三个顶点,且|PF1|>|PF2|,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值为$\frac{23}{9}$;
(4)设A(1,1),动点P在曲线C上,则|PA|+|PF1|的最大值为8+$\sqrt{9-2\sqrt{7}}$;
其中正确命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知一组数据a、b、9、10、11的平均数为10,方差为2,则|a-b|=(  )
A.2B.4C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在各小正方形边长为1的网格上依次为某几何体的正视图.侧视图与俯视图,其中正视图为等边三角形,则此几何体的体积为(  )
A.1+$\frac{2π}{3}$B.$\frac{4}{3}$+$\frac{2π}{3}$C.$\frac{2\sqrt{3}}{3}$+$\frac{\sqrt{3}π}{6}$D.$\frac{2\sqrt{3}}{3}$+$\frac{\sqrt{3}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|-1<x<3},B={x|x<a},若A∩B=A,则实数a的取值范围是(  )
A.a>3B.a≥3C.a≥-1D.a>-1

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:解答题

已知向量,函数

(1)若,求的值;

(2)在△中,角的对边分别是,且满足,求角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若实数x,y满足约束条件$\left\{\begin{array}{l}{2x+y≤4}\\{x-y≥1}\\{x-2y≤2}\end{array}\right.$,则目标函数z=3x+y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=sin2x的图象向左平移$\frac{π}{6}$个单位,再向上平移2个单位,得到g(x)的图象.若g(x1)•g(x2)=9,且x1,x2∈[-2π,2π],则|x1-x2|的最大值为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆C的中心在坐标原点,左、右焦点F1,F2在x轴上,已知A,B分别是椭圆的上顶点和右顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案