精英家教网 > 高中数学 > 题目详情
10.如图,在各小正方形边长为1的网格上依次为某几何体的正视图.侧视图与俯视图,其中正视图为等边三角形,则此几何体的体积为(  )
A.1+$\frac{2π}{3}$B.$\frac{4}{3}$+$\frac{2π}{3}$C.$\frac{2\sqrt{3}}{3}$+$\frac{\sqrt{3}π}{6}$D.$\frac{2\sqrt{3}}{3}$+$\frac{\sqrt{3}π}{3}$

分析 由题意,几何体是底面为等腰直角三角形(其直角边长为2)的三棱锥和一个半圆锥(圆锥底面半径为1)的组合体,利用体积公式,可得结论.

解答 解:由题意,几何体是底面为等腰直角三角形(其直角边长为2)的三棱锥和一个半圆锥(圆锥底面半径为1)的组合体,体积V=$\frac{1}{3}×(\frac{1}{2}×2×2)×\sqrt{3}+\frac{1}{2}×(\frac{1}{3}×π×{1}^{2}×\sqrt{3})$=$\frac{2\sqrt{3}}{6}+\frac{\sqrt{3}π}{6}$,
故选C.

点评 本题考查三视图,要求能根据三视图还原成原几何体,属简单题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则$\frac{|\overrightarrow{a}|}{\overrightarrow{a}•\overrightarrow{b}}$的取值范围为[$\frac{2}{5}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=sinωx(ω是正整数)的图象向右平移$\frac{π}{6}$个单位,所得曲线在区间$(\frac{4π}{3},\frac{3π}{2})$内单调递增,则ω的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.偶函数f(x)在(0,+∞)单调递减,f(1)=0,不等式f(x)>0的解集为(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={y|y=lgx},B={x|y=$\sqrt{x}$},则集合A∩B=(  )
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)的表达式为f(x)=$\frac{ax+b}{cx+d}$ (c≠0),则函数f(x)的图象的对称中心为(-$\frac{d}{c}$,$\frac{a}{c}$),现已知函数f(x)=$\frac{2-2x}{2x-1}$,数列{an}的通项公式为an=f($\frac{n}{2017}$)(n∈N),则此数列前2017项的和为-2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为$\frac{3}{4}$和$\frac{3}{5}$,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(1)求恰好有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品B研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利ξ万元的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数a,b满足-2≤a≤2,-2≤b≤2,则函数y=$\frac{1}{3}$x3-$\frac{\sqrt{2}}{2}$ax2+bx-1有三个单调区间的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i是虚数单位,若复数$\frac{z}{1+i}=2i$满足,则复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案